Information Technology Reference
In-Depth Information
31. E. P. Blair and C. S. Lent. An architecture for molecular computing using quantum-dot
cellular automata. In: 3rd IEEE Conference on Nanotechnology, 2: pp 402-405, 2003.
32. C. S. Lent and B. Isaksen. Clocked molecular quantum-dot cellular automata. IEEE
Transactions on Electron Devices, 50: pp 1890-1896, 2003.
33. C. S. Lent, B. Isaksen, and M. Lieberman. Molecular quantum-dot cellular automata.
Journal of the American Chemical Society, 125: pp 1056-1063, 2003.
34. H. Qi, S. Sharma, Z. H. Li, G. L. Snider, A. O. Orlov, C. S. Lent, and T. P. Fehlner.
Molecular quantum cellular automata cells. Electric field driven switching of a silicon
surface bound array of vertically oriented two-dot molecular quantum cellular
automata. Journal of the American Chemical Society, 125: pp 15250-15259, 2003.
35. L. Yuhui and C. S. Lent. Theoretical study of molecular quantum-dot cellular automata
In: 10th International Workshop on Computational Electronics pp 118-119, 2004.
36. W. C. Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein. High-resolution
electron beam lithography and DNA nanopatterning for molecular QCA. IEEE
Transactions on Nanotechnology, 4: pp 312-316, 2005.
37. Y. H. Lu and C. Lent. Theoretical study of molecular quantum-dot cellular automata.
Journal of Computational Electronics, 4: pp 115-118, 2005.
38. H. Qi, A. Gupta, B. C. Noll, G. L. Snider, Y. H. Lu, C. Lent, and T. P. Fehlner.
Dependence of field switched ordered arrays of dinuclear mixed-valence complexes on
the distance between the redox centers and the size of the counterions. Journal of the
American Chemical Society, 127: pp 15218-15227, 2005.
39. K. Walus, G. Schulhof, and G. A. Jullien. Implementation of a simulation engine for
clocked molecular QCA In: Canadian Conference on Electrical and Computer Engineer-
ing, pp 2128-2131, 2006.
40. L. Yuhui, L. Mo, and C. Lent. Molecular electronics: from structure to circuit
dynamics. In: 6th IEEE Conference on Nanotechnology: pp 62-65, 2006.
41. Y. Lu, M. Liu, and C. Lent. Molecular quantum-dot cellular automata: from molecular
structure to circuit dynamics. Journal of Applied Physics, 102: pp 034311-034317, 2007.
42. G. Csaba, A. Imre, G. H. Bernstein, W. Porod, and V. Metlushko. Nanocomputing by
field-coupled nanomagnets. IEEE Transactions on Nanotechnology, 1: pp 209-213,
2002.
43. A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, and W. Porod. Majority Logic
Gate for Magnetic Quantum-Dot Cellular Automata. Science, 311: pp 205-208, 2006.
44. C. S. Lent and P. D. Tougaw. Device architecture for computing with quantum dots.
Proceedings of the IEEE, 85: pp 541-557, 1997.
45. J. G. Kemeny and J. Vonneumann. Theory of self-reproducing automata. Science, 157:
p 180, 1967.
46. K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman. QCADesigner: a rapid
design and simulation tool for quantum-dot cellular automata. IEEE Transactions on
Nanotechnology, 3: pp 26-31, 2004.
47. J. Timler and C. S. Lent. Maxwell's demon and quantum-dot cellular automata.
Journal of Applied Physics, 94: pp 1050-1060, 2003.
48. P. D. Tougaw and C. S. Lent. Effect of stray charge on quantum cellular-automata.
Japanese Journal of Applied Physics Part 1: Regular Papers, Short Notes, and Review
Papers, 34: pp 4373-4375, 1995.
 
Search WWH ::




Custom Search