Information Technology Reference
In-Depth Information
16. G. L. Snider, A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, J. L. Merz, and
W. Porod. Quantum-dot cellular automata: line and majority logic gate. Japanese
Journal of Applied Physics Part 1: Regular Papers, Short Notes and Review Papers, 38:
pp 7227-7229, 1999.
17. G. L. Snider, A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, J. L. Merz,
and W. Porod. Quantum-dot cellular automata. Microelectronic Engineering, 47: pp
261-263, 1999.
18. G. L. Snider, A. O. Orlov, I. Amlani, X. Zuo, G. H. Bernstein, C. S. Lent, J. L. Merz,
and W. Porod. Quantum-dot cellular automata. Journal of Vacuum Science and
Technology A: Vacuum, Surfaces, and Films, 17: pp 1394-1398, 1999.
19. G. L. Snider, A. O. Orlov, I. Amlani, X. Zuo, G. H. Bernstein, C. S. Lent, J. L. Merz,
and W. Porod. Quantum-dot cellular automata: review and recent experiments
(invited). Journal of Applied Physics, 85: pp 4283-4285, 1999.
20. I. Amlani, A. O. Orlov, R. K. Kummamuru, G. H. Bernstein, C. S. Lent, and G. L.
Snider. Experimental demonstration of a leadless quantum-dot cellular automata cell.
Applied Physics Letters, 77: pp 738-740, 2000.
21. A. O. Orlov, I. Amlani, R. K. Kummamuru, R. Ramasubramaniam, G. Toth, C. S.
Lent, G. H. Bernstein, and G. L. Snider. Experimental demonstration of clocked single-
electron switching in quantum-dot cellular automata. Applied Physics Letters, 77: pp
295-297, 2000.
22. A. O. Orlov, R. K. Kummamuru, R. Ramasubramaniam, G. Toth, C. S. Lent, G. H.
Bernstein, and G. L. Snider. Experimental demonstration of a latch in clocked
quantum-dot cellular automata. Applied Physics Letters, 78: pp 1625-1627, 2001.
23. R. K. Kummamuru, J. Timler, G. Toth, C. S. Lent, R. Ramasubramaniam, A. O.
Orlov, G. H. Bernstein, and G. L. Snider. Power gain in a quantum-dot cellular
automata latch. Applied Physics Letters, 81: pp 1332-1334, 2002.
24. A. O. Orlov, R. Kummamuru, R. Ramasubramaniam, C. S. Lent, G. H. Bernstein, and
G. L. Snider. A two-stage shift register for clocked quantum-dot cellular automata.
Journal of Nanoscience and Nanotechnology, 2: pp 351-355, 2002.
25. R. K. Kummamuru, A. O. Orlov, R. Ramasubramaniam, C. S. Lent, G. H. Bernstein,
and G. L. Snider. Operation of a quantum-dot cellular automata (QCA) shift register
and analysis of errors. IEEE Transactions on Electron Devices, 50: pp 1906-1913, 2003.
26. A. O. Orlov, R. Kummamuru, R. Ramasubramaniam, C. S. Lent, G. H. Bernstein, and
G. L. Snider. Clocked quantum-dot cellular automata shift register. Surface Science,
532: pp 1193-1198, 2003.
27. C. S. Lent. Molecular electronics: bypassing the transistor paradigm. Science, 288:
pp 1598-1599, 2000.
28. K. Hennessy and C. S. Lent. Clocking of molecular quantum-dot cellular automata.
Journal of Vacuum Science and Technology B: Microelectronics and Nanometer
Structures, 19: pp 1752-1755, 2001.
29. M. Lieberman, S. Chellamma, B. Varughese, Y. L. Wang, C. Lent, G. H. Bernstein,
G. Snider, and F. C. Peiris. Quantum-dot cellular automata at a molecular scale.
Molecular Electronics II, 960: pp 225-239, 2002.
30. E. P. Blair. Tools for the design and simulation of clocked molecular quantum-dot
cellular automata circuits. Master of Science Thesis, Department of Electrical
Engineering, University of Notre Dame: p 92, 2003.
 
Search WWH ::




Custom Search