Information Technology Reference
In-Depth Information
Computer Science, Volume 1046 of Lecture Notes in Computer Science, Grenoble,
France, Feb 22-24, 1996. New York: Springer, pp 281-292.
62. C. Du¨ rr and M. Santha. A decision procedure for unitary linear quantum cellular
automata. In 37th Annual Symposium on Foundations of Computer Science,
Burlington, Vermont, Oct 1996. Piscataway, NJ: IEEE Press, pp 38-45. (Online
preprint quant-ph/9604007)
63. A. Barenco. A universal two-bit gate for quantum computation. 1995. (Online
preprint quant-ph/9505016)
64. D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter.
Elementary gates for quantum computation. Submitted to Physical Review A, 1995.
65. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. Smolin, and H. Weinfurter. Elementary gates for quantum computation.
Physical Review A, 52: p 3457, 1995. (Online preprint quant-ph/9503016)
66. D. P. DiVincenzo. Two-bit gates are universal for quantum computation. Physical
Review Letters A, 50(1015): 1995.
67. J. A. Smolin and D. P. DiVincenzo. Five two-bit quantum gates are sufficient to
implement the quantum fredkin gate. Physical Review A, 53: p 2855, 1995.
68. D. P. DiVincenzo. Quantum gates and circuits. Proceedings of the ITP Conference on
Quantum Coherence and Decoherence, Dec 1996. Submitted to Proceedings of Royal
Society London, A. (Online preprint quant-ph/9705009)
69. J. F. Poyatos, J. I. Cirac, and P. Zoller. Complete characterization of a quantum
process: the two-bit quantum gate. Physical Review Letters, 08: Nov 1996. (Online
preprint quant-ph/9611013)
70. D. Mozyrsky, V. Privman, and S. P. Hotaling. Extended Quantum XOR gate in terms
of two-spin interactions 1996. (Online preprint quant-ph/9610008)
71. D. Mozyrsky, V. Privman, and S. P. Hotaling. Design of gates for quantum
computation: the three-spin XOR gate in terms of two-spin interactions. International
Journal of Modern Physics B, 12: pp 591-600, 1998. (Online preprint uant-ph/
9612029)
72. S. Lloyd. Almost any quantum logic gate is universal. Los Alamos National
Laboratory preprint (1997c).
73. C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland.
Demonstration of a fundamental quantum logic gate. Physical Review Letters, 75:
p 4714, 1995.
74. D. P. DiVincenzo and D. Loss. Quantum Information is physical. To be published in
Superlattices and Microstructures, Special issue on the cccasion of Rolf Landauer's
70th Birthday, 1998. (Online preprint cond-mat/9710259)
75. D. Deutsch. Quantum computational network. Proceedings of the Royal Society
London, A, 425: pp 73-90, 1989.
76. A. C. C. Yao. Quantum circuit complexity. In: Proceedings of the 34th IEEE
Symposium on Foundations of Computer Science, Palo Alto, California, Nov 1993:
pp 352-361.
77. D. Aharonov, A. Kitaev, and N. Nisan. Quantum circuits with mixed
States, Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computation (STOC): pp 20-30, 1997.
(Online preprint quant-ph/9806029);
(1998).
 
Search WWH ::




Custom Search