Civil Engineering Reference
In-Depth Information
Table 6.4 Summary statistics for the convergent subregions for the TBU problem.
Subregion #
Iteration
p conv
No. points
Dim. ratio
Ave. radius
Sum radii
12
2
0.917
12
13.415
0.212
2.540
25
3
0.917
12
5.776
0.149
1.792
31
3
0.905
21
12.194
0.160
1.925
32
3
0.939
33
7.947
0.180
2.158
35
3
0.910
78
7.445
0.198
2.370
63
4
1.000
18
13.462
0.109
1.307
70
4
0.967
30
17.778
0.170
2.038
ʱ mag
n hnodes
ʱ ratio
Convergent
Non−convergent
Convergent
Non−convergent
Convergent
Non−convergent
KS = 0.186
KS = 0.264
KS = 0.131
11.0
23.5
36.0
48.5
61.0
0.00333
0.00667
0.01000
1.00
2.75
4.50
6.25
8.00
Parameter value
Parameter value
Parameter value
ʳ
ʵ
ʻ
Convergent
Non−convergent
Convergent
Non−convergent
Convergent
Non−convergent
KS = 0.325
KS = 0.28
KS = 0.316
0.00
0.25
0.50
0.75
1.00
0.900
0.925
0.950
0.975
1.000
0.6
0.7
0.8
0.9
1.0
Parameter value
Parameter value
Parameter value
Fig. 6.5 Regional sensitivity analysis based on the convergence of all experimental runs for the
TBU problem.
between the cumulative distributions, the more likely that the parameter has an effect
on convergence. Furthermore, the relative shape of the distributions can indicate what
region of the parameter space allows for convergence. For example, the RSA plot
for ʻ shows that the convergent cumulative distribution rises quickly and reaches its
maximum or total value at around ʻ =
0 . 25. This suggests that convergence is more
likely to occur in the lower range of the parameter space. Comparing this qualitative
Search WWH ::




Custom Search