Biomedical Engineering Reference
In-Depth Information
but have less stress shielding effect compared to implants with stiffer distal parts
[33, 34]. Finally, the distal hypertrophy is slighter for minimally invasive stems,
since stem tip stress is smaller.
It should be noticed that in this study all optimization processes considered a stan-
dard femur. However, the optimization model can be applied to a patient-specific
analysis where different clinical situations can be considered. For instance, bones
with osteoporosis can originate a more difficult initial stability and a fast adverse
remodeling process.
Notwithstanding some efforts to refine the computational models, this work
shows that shape optimization is a powerful tool for implant design. In fact, the
model presented in this chapter leads to useful conclusions on the relationship
between shape, porous coating, stem stability, and stress shielding. This informa-
tion is important for new prosthesis design and for surgeons who have to decide
from among numerous commercial stem shapes. Finally, it should be noted that
although the model was applied to uncemented hip prostheses, it can be easily
extended to cemented ones and also to other bone joints and bone implants.
References
1.
Karrholm, J., Garellick, G., and
Herberts, P. (2006) The Swedish Hip
Arthroplasty Register - Annual Report
2005, Joint replacement unit, Sahlgren
Hospital.
(1997) Clin. Orthop. Relat. Res. , 336 ,
156- 161.
Mandell, J.A., Carter, D.R., Goodman,
S.B., Schurman, D.J., and Breaupr
10.
´
e,
G.S. (2004) Clin. Biomech. , 19 ,
695- 703.
2.
Ruben, R.B., Folgado, J., and
Fernandes, P.R. (2007) Struct. Multi.
Optim. , 34 , 261- 275.
11.
Bernakiewicz, M., Viceconti, M., and
Toni, A. (1999) Investigation of the
influence of periprosthetic fibrous
tissue on the primary stability on un-
cemented hip prostheses, in Computer
Methods in Biomechanics and Biomedi-
cal Engineering - 3 (eds J. Middleton,
M.L. Jones, N.G. Shrive, and G.N.
Pande), Gordon and Breach, New York,
p. 21-26.
3.
Ruben, R.B., Folgado, J., and
Fernandes, P.R. (2006) Virt. Phys.
Prototyp. , 1 , 147- 158.
4.
Furnes, O., Havelin, L.I., Espehaug, B.,
Steindal, K., and Sør as, T.E. (2006) Re-
port 2006, Centre of Excellence of Joint
Replacements, Haukeland University
Hospital.
5.
Gross, S. and Abel, E.W. (2001)
J. Biomech. , 34 , 995- 1003.
12.
Fernandes, P.R., Folgado, J., Jacobs, C.,
and Pellegrini, V. (2002) J. Biomech. ,
35 , 167- 176.
6.
Viceconti, M., Muccini, R.,
Bernakiewicz, M., Baleani, M., and
Cristofolini, L. (2000) J. Biomech. , 33 ,
1611- 1618.
13.
Huiskes, R. and Boeklagen, R. (1989)
J. Biomech. , 22 , 793- 804.
14.
Yonn, Y.S., Jang, G.H., and Kim, Y.Y.
(1989) J. Biomech. , 22 , 1279- 1284.
Lennon, A.B., McCormack, B.A.O.,
and Prendergast, P.J. (2003) Med. Eng.
Phys. , 25 , 8333- 8841.
7.
15.
Katoozian, H. and Davy, D.T. (1993)
Bioeng. Conf. ASME , 24 , 552- 555.
8.
Emerson, R.H., Head, W.C., Emerson,
C.B., Rosenfeldt, W., and Higgins, L.L.
(2002) J. Arthroplasty , 17 , 584- 591.
16.
Katoozian, H. and Davy, D.T. (2000)
Med. Eng. Phys. , 22 , 243- 251.
Hedia, H.S., Barton, D.C., Fisher, J.,
and Elmidany, T.T. (1996) Med. Eng.
Phys. , 18 , 299- 654.
17.
9.
Herzwurm, P.J., Simpson, S., Duffin,
S., Oswald, S.G., and Ebert, F.R.
Search WWH ::




Custom Search