Graphics Programs Reference
In-Depth Information
where
Symbol
Description
Units
Status
r1
small end radius
meters
input
r2
large end radius
meters
input
freq
frequency
Hz
input
indicator
indicator = 1 when viewing from
large end
indicator = 0 when viewing from
small end
none
input
rcs
array of RCS versus aspect angle
dBsm
output
11.5.5. Cylinder
Fig. 11.24 shows the geometry associated with a finite length conducting
cylinder. Two cases are presented: first, the general case of an elliptical cross
section cylinder; second, the case of a circular cross section cylinder. The nor-
mal and non-normal incidence backscattered RCS due to a linearly polarized
incident wave from an elliptical cylinder with minor and major radii being
and
r 1
r 2
are, respectively, given by
H 2 r 2 r 2
σ θ n
=
--------------------------------------------------------------------
(11.46)
] 1.5
λ r 2
) 2
r 2
) 2
[
(
cos
ϕ
+
(
sin
ϕ
λ r 2 r 2
sin
θ
σ
=
-----------------------------------------------------------------------------------------------
(11.47)
] 1.5
) 2
r 2
) 2
r 2
) 2
(
cos
θ
[
(
cos
ϕ
+
(
sin
ϕ
For a circular cylinder of radius
r
, then due to roll symmetry, Eqs. (11.46)
and (11.47), respectively, reduce to
H 2 r
λ
σ θ n
=
----------------
(11.48)
sin
8πθ
λ r
θ
σ
=
--------------------------
(11.49)
) 2
(
cos
Fig. 11.25a shows a plot of the cylinder backscattered RCS for a symmetri-
cal cylinder. Fig. 11.25b shows the backscattered RCS for an elliptical cylin-
der. These plots can be reproduced using MATLAB function Ðrcs_cylinder.mÑ
given in Listing 11.9 in Section 11.9.
Search WWH ::




Custom Search