Graphics Programs Reference
In-Depth Information
x 0
() x 0
+
() 2 x 0
–
()
ßß s
()
=
-------------------------------------------------------
T 2
Using Eq. (9.63) the state transition matrix for the
αβγ
filter is
T 2
2
-----
1
T
Φ
=
(9.114)
01 T
0 0 1
The covariance matrix (which is symmetric) can be computed from Eq. (9.76).
For this purpose, note that
α
β T
K
=
γ T 2
(9.115)
G
=
(9.116)
1 00
and
) T 2
1 α
–
(
1 α
–
) T
(
1 α
–
2
AI
=
(
–
G
=
(9.117)
–
β T
–
β
+
1
(
1 β 2
–
) T
T 2
–
–
T
(
1
–
γ
)
Substituting Eq. (9.117) into (9.76) and collecting terms the VRR ratios are
computed as
2β 2α 2
(
+
2β 3αβ
–
) αγ 42α
–
(
–
–
β
)
(
VRR
) x
=
----------------------------------------------------------------------------------------------
(9.118)
(
42α
–
–
β
) 2αβ αγ
(
+
–
)
3
2 γ
2
–
+
(
2 α
–
)
(
VRR
) ß
=
-----------------------------------------------------------------------------
(9.119)
T 2
(
42α
–
–
β
) 2αβ αγ
(
+
–
)
4βγ 2
(
VRR
) ßß
=
-----------------------------------------------------------------------------
(9.120)
T 4
(
42α
–
–
β
) 2αβ αγ
(
+
–
)
As in the case of any discrete time system, this filter will be stable if and only if
all of its poles fall within the unit circle in the z-plane.
The
αβγ
characteristic equation is computed by setting
Search WWH ::




Custom Search