Graphics Programs Reference
In-Depth Information
0
N
–
–
1
q
1
----
e j f d iT
χτ f d
(
;
)
=
χ 1
(
τ
–
qT
;
f d
)
(4.30)
q
=
–
(
N 1
–
)
i
=
0
N
–
1
N
–
–
1
q
1
----
e j f d qT χ 1
e j f d jT
+
(
τ
–
qT
;
f d
)
q
=
1
j
=
0
Setting
z
=
exp
(
j f d T
)
, and using the relation
N
–
–
1
q
z Nq
–
1
–
1
z j
=
----------------------
(4.31)
–
z
j
=
0
yield
N
–
–
1
q
sin
[
π f d
(
N
–
1
–
qT
)
]
e j f d iT
[
j π f d N
(
–
1
–
qT
)
]
=
e
------------------------------------------------------
(4.32)
sin
(
π f d T
)
i
=
0
Using Eq. (4.32) in Eq. (4.30) yields two complementary sums for positive and
negative
q
. Both sums can be combined as
N
–
1
sin
[
π f d
(
NqT
–
)
]
1
----
[
j π f d N
(
–
1
+
q
) T
]
---------------------------------------------
χτ f d
(
;
)
=
χ 1
(
τ
–
qT
;
f d
) e
(4.33)
sin
(
π f d T
)
q
=
–
(
N 1
–
)
Finally, the ambiguity function associated with the coherent pulse train is com-
puted as the modulus square of Eq. (4.33). For
τ′
<
T
2
, the ambiguity func-
tion reduces to
N
–
1
1
----
sin
[
π f d
(
NqT
–
)
]
χτ f d
(
;
)
=
χ 1
(
τ
–
qT
;
f d
)
---------------------------------------------
(4.34)
sin
(
π f d T
)
q
=
–
(
N 1
–
)
Thus, the ambiguity function for a coherent pulse train is the superposition
of the individual pulseÓs ambiguity functions. The ambiguity function cuts
along the time delay and Doppler axes are, respectively, given by
–
N
1
2
q
-----
τ
–
τ′
qT
) 2
χτ;
(
=
1
–
1
–
------------------
;
τ
–
qT
<
τ′
(4.35)
q
=
–
(
N 1
–
)
Search WWH ::




Custom Search