Environmental Engineering Reference
In-Depth Information
μ ∂ˆ
ˆμ
g
g
∇· μ ˆ
dr
=
g
dS
dS
+
ˆ ∇· μ
gdr
,
n
n
D
D
D
D
g
∇· ˆ s dr
=
g
ˆ s ·
n dS
ˆ ∇·
g s dr
,
D
D
D
where g s =−
v s g k . Then
(
A
ˆ,
g
) =
ˆ(
U
·∇
g
−∇· μ
g
+ ˃
g
−∇·
g s )
dr
D
ˆμ
g
μ ∂ˆ
+
g
ˆ
U
·
n dS
+
dS
g
dS
+
g
ˆ s ·
n dS
.
n
n
D
D
D
D
D into four integrals over S T , S + , S and
S B , and using conditions ( 2.6 )-( 2.9 ) and ( 2.12 ), we obtain that
Dividing the integrals over boundary
(
A
ˆ,
g
) =
ˆ(
U
·∇
g
−∇· μ
g
+ ˃
g
−∇·
g s )
dr
D
provided that the function g satisfies the boundary conditions ( 2.20 )-( 2.23 ) (see
below). Thus, the Lagrange identity is fulfilled if
A g
=−
U
·∇
g
−∇· μ
g
+ ˃
g
−∇·
g s .
On the other hand, multiplying Eq. ( 2.4 )by g and integrating the result over the
space-time domain D
× (
0
,
T
)
, we get
g N
drdt
T
T
T
g ∂ˆ
drdt
+
gA
ˆ
drdt
=
Q i (
t
)ʴ(
r
r i )
.
t
i =
1
0
D
0
D
0
D
Integration by parts of the first integral, together with conditions ( 2.10 ) and
g
(
r
,
T
) =
0, leads to
T
T
g ∂ˆ
ˆ
g
0
drdt
=−
g
(
r
,
0
(
r
)
dr
drdt
t
t
0
D
D
0
D
 
Search WWH ::




Custom Search