Geoscience Reference
In-Depth Information
2
3
!
λ
!
! X
X
n R
X
C p x ðÞ
k P k X
q∈P k
1 P k X
q∈P k
X
a∈L ˉ q g a ʴ aq ʴ ap
4
5
x q
k
x q
x p þλ
1
p∈P k
q∈P
2
4
3
5 z p z p
h
i
h
i
þ X
n R
X
∂ʳ k z ðÞ
x p x p
z p ˉ p
1
p∈P k
"
#
h
i 0,
þ X
X
T kp þz p X
q
X
n R
g a x q ʴ aq ʴ ap
ˉ p ˉ p
8 x
ð
;
z
Þ∈
K ,
1
p
∈P k
∈P
a
L
ð 15
:
24 Þ
where
C p ðÞ
x p X
a∈L
^
c a f ðÞ
ʴ ap ,
8p
∈P k ;
k ¼ 1,
...
, n R :
ð 15
:
25 Þ
f a
Proof: Consider the optimization formulation in ( 15.21 ). The convexity of the
objective function follows, under the imposed assumptions, from Nagurney
et al. ( 2012a ), and since the
ʳ k ( z ) functions are assumed to be convex.
According to Bertsekas and Tsitsiklis ( 1989 ) (page 287), the optimization
problem ( 15.21 ), along with its inequality constraints ( 15.19 ), is equivalent to the
below inequality which is resulted from the Karush-Kuhn-Tucker
(KKT)
(cf. Karush 1939 ; Kuhn and Tucker 1951 ) conditions:
2
3
X
n R
X
þ X
q∈P
X
a∈L ˉ q g a ʴ aq ʴ ap
Δ k þ λ k E
Δ k þ ʳ k zðÞ
4
x p C p xðÞþλ k E
5
1
p∈P k
h
i
x p x p
2
3
h
i
þ X
n R
X
k þ λ
k þ ʳ k zðÞ
ˉ p
4
z p C p xðÞþλ
5 z p z p
k E
k E
Δ
Δ
1
p∈P k
"
#
h
i 0,
þ X
X
T kp þ z p X
q
X
n R
g a x q ʴ aq ʴ ap
ˉ p ˉ p
8 x
ð
;
z
; ˉ
Þ∈
K
:
1
p
∈P k
∈P
a∈L
ð 15
:
26 Þ
Substituting the partial derivatives in ( 15.26 ), and using ( 15.25 ), ( 15.22a ), and
( 15.22b ), one obtains the variational inequality ( 15.24 ).
Variational inequality ( 15.24 ) can be put into standard form (Nagurney ( 1999 ))
as follows: determine X ∈K such that:
Search WWH ::




Custom Search