Biomedical Engineering Reference
In-Depth Information
65. Turner CH, Takano Y, Owan I et al. Nitric oxide inhibitor L-NAME suppresses mechanically
induced bone formation in rats. Am J Physiol 1996; 270(4 Pt 1):E634-E639.
66. Fox SW, Chambers TJ, Chow JW. Nitric oxide is an early mediator of the increase in bone forma-
tion by mechanical stimulation. Am J Physiol 1996; 270(6 Pt 1):E955-E960.
67. Koprowski H, Maeda H. The role of nitric oxide in physiology and pathophysiology. Springer-Verlag,
Berlin, Germany., 1995.
68. Helfrich MH, Evans DE, Grabowski PS et al. Expression of nitric oxide synthase isoforms in bone
and bone cell cultures. J Bone Miner Res 1997; 12(7):1108-1115.
69. Zaman G, Pitsillides AA, Rawlinson SC et al. Mechanical strain stimulates nitric oxide production
by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res 1999;
14(7):1123-1131.
70. Klein-Nulend J, Helfrich MH, Sterck JG et al. Nitric oxide response to shear stress by human
bone cell cultures is endothelial nitric oxide synthase dependent. Biochem Biophys Res Commun
1998; 250(1):108-114.
71. Busse R, Fleming I. Pulsatile stretch and shear stress: Physical stimuli determining the production
of endothelium-derived relaxing factors. J Vasc Res 1998; 35(2):73-84.
72. Uematsu M, Ohara Y, Navas JP et al. Regulation of endothelial cell nitric oxide synthase mRNA
expression by shear stress. Am J Physiol 1995; 269(6 Pt 1):C1371-C1378.
73. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the
cytoskeleton. Science 1993; 260(5111):1124-1127.
74. Watson PA. Function follows form: Generation of intracellular signals by cell deformation. FASEB
J 1991; 5(7):2013-2019.
75. Ajubi NE, Klein-Nulend J, Alblas MJ et al. Signal transduction pathways involved in fluid
flow-induced PGE2 production by cultured osteocytes. Am J Physiol 1999; 276(1 Pt 1):E171-E178.
76. Pavalko FM, Chen NX, Turner CH et al. Fluid shear-induced mechanical signaling in MC3T3-E1
osteoblasts requires cytoskeleton-integrin interactions. Am J Physiol 1998; 275(6 Pt 1):C1591-C1601.
77. Chen NX, Ryder KD, Pavalko FM et al. Ca(2+) regulates fluid shear-induced cytoskeletal reorga-
nization and gene expression in osteoblasts. Am J Physiol Cell Physiol 2000; 278(5):C989-C997.
78. You J, Yellowley CE, Donahue HJ et al. Substrate deformation levels associated with routine physical
activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech
Eng 2000; 122(4):387-393.
79. Murray DW, Rushton N. The effect of strain on bone cell prostaglandin E2 release: A new experi-
mental method. Calcif Tissue Int 1990; 47(1):35-39.
80. Neidlinger-Wilke C, Stalla I, Claes L et al. Human osteoblasts from younger normal and osteoporotic
donors show differences in proliferation and TGF beta-release in response to cyclic strain. J Biomech
1995; 28(12):1411-1418.
81. Mikuni-Takagaki Y, Suzuki Y, Kawase T et al. Distinct responses of different populations of bone
cells to mechanical stress. Endocrinology 1996; 137(5):2028-2035.
82. Kawata A, Mikuni-Takagaki Y. Mechanotransduction in stretched osteocytes—temporal expression
of immediate early and other genes. Biochem Biophys Res Commun 1998; 246(2):404-408.
83. Burger EH, Veldhuijzen JP. Influence of mechanical factors on bone formation,resorption,and growth
in vitro. Boca Raton, FL: CRC Press, 1993:37-56.
84. Miyauchi A, Notoya K, Mikuni-Takagaki Y et al. Parathyroid hormone-activated volume-sensitive
calcium influx pathways in mechanically loaded osteocytes. J Biol Chem 2000; 275(5):3335-3342.
85. Jones DB, Nolte H, Scholubbers JG et al. Biochemical signal transduction of mechanical strain in
osteoblast-like cells. Biomaterials 1991; 12(2):101-110.
86. Bottlang M, Simnacher M, Schmitt H et al. A cell strain system for small homogeneous strain
applications. Biomed Tech (Berl) 1997; 42(11):305-309.
87. Peake MA, Cooling LM, Magnay JL et al. Selected contribution: Regulatory pathways involved in
mechanical induction of c-fos gene expression in bone cells. J Appl Physiol 2000; 89(6):2498-2507.
88. Brown TD. Techniques for mechanical stimulation of cells in vitro: A review. J Biomech 2000;
33(1):3-14.
89. Basso N, Heersche JN. Characteristics of in vitro osteoblastic cell loading models. Bone 2002;
30(2):347-351.
90. Eastwood M, McGrouther DA, Brown RA. Fibroblast responses to mechanical forces. Proc Inst
Mech Eng [H] 1998; 212(2):85-92.
91. Prajapati RT, Eastwood M, Brown RA. Duration and orientation of mechanical loads determine
fibroblast cyto- mechanical activation: Monitored by protease release. Wound Repair Regen 2000;
8(3):238-246.
92. Akhouayri O, Lafage-Proust MH, Rattner A et al. Effects of static or dynamic mechanical stresses
on osteoblast phenotype expression in three-dimensional contractile collagen gels. J Cell Biochem
1999; 76(2):217-230.
Search WWH ::




Custom Search