Biomedical Engineering Reference
In-Depth Information
10. Burger EH, Klein-Nulend J. Mechanotransduction in bone—role of the lacuno-canalicular net-
work. FASEB J 1999; 13(Suppl):S101-S112.
11. Frost HM. Bone “mass” and the “mechanostat”: A proposal. Anat Rec 1987; 219(1):1-9.
12. Hert J. A new attempt at the interpretation of the functional architecture of the cancellous bone.
J Biomech 1994; 27(2):239-242.
13. Lanyon LE, Bourn S. The influence of mechanical function on the development and remodeling
of the tibia. An experimental study in sheep. J Bone Joint Surg Am 1979; 61(2):263-273.
14. Petrtyl M, Hert J, Fiala P. Spatial organization of the haversian bone in man. J Biomech 1996;
29(2):161-169.
15. Ajubi NE, Klein-Nulend J, Nijweide PJ et al. Pulsating fluid flow increases prostaglandin produc-
tion by cultured chicken osteocytes—a cytoskeleton-dependent process. Biochem Biophys Res
Commun 1996; 225(1):62-68.
16. Klein-Nulend J, van der PA, Semeins CM et al. Sensitivity of osteocytes to biomechanical stress in
vitro. FASEB J 1995; 9(5):441-445.
17. Klein-Nulend J, Semeins CM, Ajubi NE et al. Pulsating fluid flow increases nitric oxide (NO)
synthesis by osteocytes but not periosteal fibroblasts—correlation with prostaglandin upregulation.
Biochem Biophys Res Commun 1995; 217(2):640-648.
18. Pitsillides AA, Rawlinson SC, Suswillo RF et al. Mechanical strain-induced NO production by
bone cells: A possible role in adaptive bone (re)modeling? FASEB J 1995; 9(15):1614-1622.
19. Westbroek I, Ajubi NE, Alblas MJ et al. Differential stimulation of prostaglandin G/H synthase-2
in osteocytes and other osteogenic cells by pulsating fluid flow. Biochem Biophys Res Commun
2000; 268(2):414-419.
20. Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical
loading-induced bone fluid shear stresses. J Biomech 1994; 27(3):339-360.
21. Cowin SC, Weinbaum S, Zeng Y. A case for bone canaliculi as the anatomical site of strain gen-
erated potentials. J Biomech 1995; 28(11):1281-1297.
22. Mak AF, Huang DT, Zhang JD et al. Deformation-induced hierarchical flows and drag forces in
bone canaliculi and matrix microporosity. J Biomech 1997; 30(1):11-18.
23. Weinbaum S, Guo P, You L. A new view of mechanotransduction and strain amplification in cells
with microvilli and cell processes. Biorheology 2001; 38(2-3):119-142.
24. Turner CH, Forwood MR, Otter MW. Mechanotransduction in bone: Do bone cells act as sen-
sors of fluid flow? FASEB J 1994; 8(11):875-878.
25. Turner CH, Owan I, Takano Y. Mechanotransduction in bone: Role of strain rate. Am J Physiol
1995; 269(3 Pt 1):E438-E442.
26. Owan I, Burr DB, Turner CH et al. Mechanotransduction in bone: Osteoblasts are more respon-
sive to fluid forces than mechanical strain. Am J Physiol 1997; 273(3 Pt 1):C810-C815.
27. Hannouche D, Petite H, Sedel L. Current trends in the enhancement of fracture healing. J Bone
Joint Surg Br 2001; 83(2):157-164.
28. Barnes GL, Kostenuik PJ, Gerstenfeld LC et al. Growth factor regulation of fracture repair. J Bone
Miner Res 1999; 14(11):1805-1815.
29. Goodship AE, Cunningham JL, Kenwright J. Strain rate and timing of stimulation in mechanical
modulation of fracture healing. Clin Orthop 1998; (355 Suppl):S105-S115.
30. Hankemeier S, Grassel S, Plenz G et al. Alteration of fracture stability influences chondrogenesis,
osteogenesis and immigration of macrophages. J Orthop Res 2001; 19(4):531-538.
31. Augat P, Merk J, Wolf S et al. Mechanical stimulation by external application of cyclic tensile
strains does not effectively enhance bone healing. J Orthop Trauma 2001; 15(1):54-60.
32. Aspenberg P, Goodman S, Toksvig-Larsen S et al. Intermittent micromotion inhibits bone in-
growth. Titanium implants in rabbits. Acta Orthop Scand 1992; 63(2):141-145.
33. Larsson S, Kim W, Caja VL et al. Effect of early axial dynamization on tibial bone healing: A
study in dogs. Clin Orthop 2001; 388:240-251.
34. Radomisli TE, Moore DC, Barrach HJ et al. Weight-bearing alters the expression of collagen types
I and II, BMP 2/4 and osteocalcin in the early stages of distraction osteogenesis. J Orthop Res
2001; 19(6):1049-1056.
35. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: Part II. The influence
of the rate and frequency of distraction. Clin Orthop 1989;(239):263-285.
36. Yasui N, Sato M, Ochi T et al. Three modes of ossification during distraction osteogenesis in the
rat. J Bone Joint Surg Br 1997; 79(5):824-830.
37. Paccione MF, Mehrara BJ, Warren SM et al. Rat mandibular distraction osteogenesis: Latency,
rate, and rhythm determine the adaptive response. J Craniofac Surg 2001; 12(2):175-182.
38. Meyer U, Meyer T, Wiesmann HP et al. The effect of magnitude and frequency of interfragmentary
strain on the tissue response to distraction osteogenesis. J Oral Maxillofac Surg 1999;
57(11):1331-1339.
Search WWH ::




Custom Search