Biomedical Engineering Reference
In-Depth Information
70. Wilkie AO et al. Functional haploinsufficiency of the human homeobox gene MSX2 causes defects
in skull ossification. Nat Genet 2000; 24:387-390.
71. Foerst-Potts L, Sadler TW. Disruption of Msx-1 and Msx-2 reveals roles for these genes in cranio-
facial, eye, and axial development. Dev Dyn 1997; 209:70-84.
72. Ma L et al. The molecular basis of Boston-type craniosynostosis: the Pro148->His mutation in the
N-terminal arm of the MSX2 homeodomain stabilizes DNA binding without altering nucleotide
sequence preferences. Hum Mol Genet 1996; 5:1915-1920.
73. Satokata I et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal
organ formation. Nat Genet 2000; 24:391-395.
74. El Ghouzzi V et al. Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nat Genet
1997; 15:42-46.
75. Howard TD et al. Mutations in TWIST, a basic helix-loop-helix transcription factor, in
Saethre-Chotzen syndrome. Nat Genet 1997; 15:36-41.
76. Wolf C et al. The M-twist gene of Mus is expressed in subsets of mesodermal cells and is closely
related to the Xenopus X-twi and the Drosophila twist genes. Dev Biol 1991; 143:363-373.
77. Chen ZF, Behringer RR. twist is required in head mesenchyme for cranial neural tube morphogen-
esis. Genes Dev 1995; 9:686-699.
78. Wakasugi S et al. An autosomal dominant mutation of facial development in a transgenic mouse.
Dev Genet 1988; 9:203-212.
79. El Ghouzzi V et al. Mutations in the basic domain and the loop-helix II junction of TWIST
abolish DNA binding in Saethre-Chotzen syndrome. FEBS L 2001; 492:112-118.
80. El Ghouzzi V et al. Saethre-Chotzen mutations cause TWIST protein degradation or impaired
nuclear location. Hum Mol Genet 2000; 9:813-819.
81. El Ghouzzi V et al. Mutations within or upstream of the basic helix-loop-helix domain of the
TWIST gene are specific to Saethre-Chotzen syndrome. Eur J Hum Genet 1999; 7:27-33.
82. Johnson D et al. A comprehensive screen for TWIST mutations in patients with craniosynostosis
identifies a new microdeletion syndrome of chromosome band 7p21.1. Am J Hum Genet 1998;
63:1282-1293.
83. Zhang YW et al. PEBP2alphaA/CBFA1 mutations in Japanese cleidocranial dysplasia patients. Gene
2000; 244:21-28.
84. Lee B et al. Missense mutations abolishing DNA binding of the osteoblast-specific transcription
factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet 1997; 16:307-310.
85. Mundlos S et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia.
Cell 1997; 89:773-779.
86. Zhang YW et al. A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivation
and Smad interaction in cleidocranial dysplasia. Proc Nat Acad Sci USA 2000; 97:10549-10554.
87. Quack I et al. Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia.
Am J Hum Genet 1999; 65:1268-1278.
88. Zhou G et al. CBFA1 mutation analysis and functional correlation with phenotypic variability in
cleidocranial dysplasia. Hum Mol Genet 1999; 8:2311-2316.
89. Weilbaecher KN et al. Age-resolving osteopetrosis: a rat model implicating microphthalmia and the
related transcription factor TFE3. J Exp Med 1998; 187:775-785.
Search WWH ::




Custom Search