Biomedical Engineering Reference
In-Depth Information
39. Scott EW et al. Requirement of transcription factor PU.1 in the development of multiple hemato-
poietic lineages. Science 1994; 265:1573-1577.
40. Hromas R et al. Hematopoietic lineage- and stage-restricted expression of the ETS oncogene fam-
ily member PU.1. Blood 1993; 82:2998-30041.
41. Tondravi MM et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Na-
ture 1997; 386:81-84.
42. McKercher SR et al. The transcription factor PU.1 does not regulate lineage commitment but has
lineage-specific effects. J Leuko Biol 1999; 66:727-732.
43. Henkel GW et al. Commitment to the monocytic lineage occurs in the absence of the transcrip-
tion factor PU.1. Blood 1999; 93:2849-2858.
44. Zhang DE et al. The macrophage transcription factor PU.1 directs tissue-specific expression of the
macrophage colony-stimulating factor receptor. Mol Cell Biol 1994; 14:373-381.
45. Ward JM, Young DM. Histogenesis and Morphology of periosteal sarcomas induced by FBJ virus
in NIH Swiss mice. Cancer Res 1976; 36:3985-3992.
46. Caubet JF, Bernaudin JF. Expression of the c-fos proto-oncogene in bone, cartilage and tooth
forming tissues during mouse development. Biol Cell 1988; 64:101-104.
47. Grigoriadis AE et al. Osteoblasts are target cells for transformation in c-fos transgenic mice. J Cell
Biol 1993; 122:685-701.
48. Wang ZQ et al. Bone and haematopoietic defects in mice lacking c-fos. Nature 1992; 360:741-745.
49. Grigoriadis AE et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and
bone remodeling. Science 1994; 266(5184):443-448.
50. Wisdon R, Verma IM. Transformation by Fos proteins requires a C-terminal transactivation do-
main. Mol Cell Biol 1993; 13:7429-7438.
51. Fleischmann A et al. Fra-1 replaces c-Fos-dependent functions in mice. Genes Dev 2000;
14:2695-2700.
52. Matsuo K et al. Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat
Genet 2000; 24:184-187.
53. Lenardo MJ, Baltimore D. NF-kappa B: a pleiotropic mediator of inducible and tissue-specific
gene control. Cell 1989; 58: 227-229.
54. Zhou D et al. Effects of NF-kappaB1 (p50) targeted gene disruption on ionizing radiation-induced
NF-kappaB activation and TNFalpha, IL-1alpha, IL-1beta and IL-6 mRNA expression in vivo.
Intl J Rad Biol 2001; 77:763-772.
55. Caamano JH et al. Nuclear factor (NF)-kappa B2 (p100/p52) is required for normal splenic
microarchitecture and B cell-mediated immune responses. J Exp Med 1998; 187:185-196.
56. Iotsova V et al. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 1997;
3:1285-1289.
57. Packer SO. The eye and skeletal effects of two mutant alleles at the microphthalmia locus of Mus
musculus. J Exp Zool 1967; 165:21-45.
58. Hughes MJ et al. A helix-loop-helix transcription factor-like gene is located at the mi locus. J Biol
Chem 1993; 268:20687-20690.
59. Hodgkinson CA et al. Mutations at the mouse microphthalmia locus are associated with defects in
a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 1993; 74:395-404.
60. Motyckova G et al. Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expres-
sion by the microphthalmia transcription factor family. Proc Nat Acad Sci USA 2001; 98:5798-5803.
61. Akarsu AN et al. Genomic structure of HOXD13 gene: a nine polyalanine duplication causes
synpolydactyly in two unrelated families. Hum Mol Genet 1996; 5:945-952.
62. Muragaki Y et al. Altered growth and branching patterns in synpolydactyly caused by mutations in
HOXD13. Science 1996; 272:548-551.
63. Maconochie M et al. Paralogous Hox genes: function and regulation. Annu Rev Genet 1996;
30:529-556.
64. McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell 1992; 68:283-302.
65. van den Boogaard MJ et al. MSX1 mutation is associated with orofacial clefting and tooth agenesis
in humans. [Erratum appears in Nat Genet 2000; 25(1):125]. Nat Genet 2000; 24:342-343.
66. Hu G et al. Haploinsufficiency of MSX1: a mechanism for selective tooth agenesis. Mol Cell Biol
1998; 18:6044-6051.
67. Vastardis H et al. A human MSX1 homeodomain missense mutation causes selective tooth agen-
esis. Nat Genet 1996; 13:417-421.
68. Satokata I, Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and
tooth development. Nat Genet 1994; 6:348-356.
69. Jabs EW et al. A mutation in the homeodomain of the human MSX2 gene in a family affected
with autosomal dominant craniosynostosis. Cell 1993; 75:443-450.
Search WWH ::




Custom Search