Biomedical Engineering Reference
In-Depth Information
161. Boodhwani, M., et al.: The future of therapeutic myocardial angiogenesis. Shock 26(4),
332-341 (2006)
162. Robson, M.C., Mustoe, T.A., Hunt, T.K.: The future of recombinant growth factors in
wound healing. Am. J. Surg. 176(2, Supplement 1), 80S-82S (1998)
163. Simons, M., et al.: Clinical trials in coronary angiogenesis: issues, problems, consensus: an
expert panel summary. Circulation 102(11), e73-e86 (2000)
164. Barlow, D.E.: Endoscopic applications of electrosurgery: a review of basic principles.
Gastrointest. Endosc. 28(2), 73-76 (1982)
165. Brand, C.U., et al.: Application of argon plasma coagulation in skin surgery. Dermatology
197(2), 152-157 (1998)
166. Colt, H.G., Crawford, S.W.: In vitro study of the safety limits of bronchoscopic argon
plasma coagulation in the presence of airway stents. Respirology 11(5), 643-647 (2006)
167. Raiser, J., Zenker, M.: Argon plasma coagulation for open surgical and endoscopic
applications: state of the art. J. Phys. D Appl. Phys. 39, 3520-3523 (2006)
168. Robotis, J., Sechopoulos, P., Rokkas, T.: Argon plasma coagulation: clinical applications in
gastroenterology. Ann. Gastroenterol. 16(2), 131-137 (2003)
169. Chirokov, A., Gutsol, A., Fridman, A.: Atmospheric pressure plasma of dielectric barrier
discharges. Pure Appl. Chem. 77(2), 487-495 (2005)
170. Fridman, G., et al.: Blood coagulation and living tissue sterilization by floating-electrode
dielectric barrier discharge in air. Plasma Chem. Plasma Process. 26, 425-442 (2006)
171. Soloshenko, I.A., et al.: Sterilization of medical products in low-pressure glow discharges.
Plasma Phys. Rep. 26(9), 792-800 (2000)
172. Kuo, S.P., et al.: Contribution of a portable air plasma torch to rapid blood coagulation as a
method of preventing bleeding. New J. Phys. 11, 115016 (2009)
173. Shekhter, A.B., et al.: Beneficial effect of gaseous nitric oxide on the healing of skin
wounds. Nitric Oxide Biol. Chem. 12, 210-219 (2005)
174. Sladek, R.E.J., et al.: Plasma treatment of dental cavities: a feasibility study. IEEE Trans.
Plasma Sci. 32(4), 1540-1543 (2004)
175. Sensenig, R., et al.: Non-thermal plasma induces apoptosis in melanoma cells via production
of intracellular reactive oxygen species. Ann. Biomed. Eng. 39(2), 674-687 (2011)
176. Yildrim, E.D., et al.: Effect of dielectric barrier discharge plasma on the attachment and
proliferation of osteoblasts cultured over poly(e-caprolactone) scaffolds. Plasma Process
Polym. 5(4), 397 (2008)
177. Eliasson, B., Egli, W., Kogelschatz, U.: Modelling of dielectric barrier discharge chemistry.
Pure Appl. Chem. 66(6), 1275-1286 (1994)
178. Kuchenbecker,
M.,
et
al.:
Characterization
of
DBD
plasma
source
for
biomedical
applications. J. Phys. D: Appl. Phys. 42(4) (2009)
179. Kalghatgi, S., et al.: Endothelial cell proliferation is enhanced by low dose non-thermal plasma
through fibroblast growth factor-2 release. Ann. Biomed. Eng. 38(3), 748-757 (2010)
180. Fridman, G., et al.: Floating electrode dielectric barrier discharge plasma in air promoting
apoptotic behavior in melanoma skin cancer cell lines. Plasma Chem. Plasma Process.
27(2), 163-176 (2007)
181. Clyne, A.M., Zhu, H., Edelman, E.R.: Elevated fibroblast growth factor-2 increases tumor
necrosis factor-alpha induced endothelial cell death in high glucose. J. Cell. Physiol. 217(1),
86-92 (2008)
182. Muthukrishnan, L., Warder, E., McNeil, P.L.: Basic fibroblast growth factor is efficiently
released from a cytolsolic storage site through plasma membrane disruptions of endothelial
cells. J. Cell. Physiol. 148(1), 1-16 (1991)
183. Caplice, N.M., et al.: Growth factors released into the coronary circulation after vascular
injury promote proliferation of human vascular smooth muscle cells in culture. J. Am. Coll.
Cardiol. 29(7), 1536-1541 (1997)
184. Callaghan, M.J., et al.: Pulsed electromagnetic fields accelerate normal and diabetic wound
healing by increasing endogenous FGF-2 release. Plast. Reconstr. Surg. 121(1), 130-141
(2008)
Search WWH ::




Custom Search