Biomedical Engineering Reference
In-Depth Information
70. Fuks, Z., et al.: Basic fibroblast growth factor protects endothelial cells against radiation-
induced programmed cell death in vitro and in vivo. Cancer Res. 54, 2582-2590 (1994)
71. Haimovitz-Friedman, A., et al.: Protein kinase C mediated basic fibroblast growth factor
protection of endothelial cells against radiation-induced apoptosis. Cancer Res. 54(10),
2591-2597 (1994)
72. Ku, P.T., D'Amore, P.A.: Regulation of basic fibroblast growth factor (bFGF) gene and
protein expression following its release from sublethally injured endothelial cells. J. Cell.
Biochem. 58(3), 328-343 (1995)
73. Finklestein, S.P., et al.: Increased basic fibroblast growth factor (bFGF) immunoreactivity at
the site of focal brain wounds. Brain Res. 460(2), 253-259 (1988)
74. Fischer, T.A., et al.: Regulation of bFGF expression and Ang II secretion in cardiac
myocytes and microvascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 272(2),
H958-H968 (1997)
75. Weich, H.A., et al.: Transcriptional regulation of basic fibroblast growth factor gene
expression in capillary endothelial cells. J. Cell. Biochem. 47(2), 158-164 (1991)
76. Jimenez, S.K., et al.: Transcriptional regulation of FGF-2 gene expression in cardiac
myocytes. Cardiovas. Res. 62(3), 548-557 (2004)
77. Seghezzi, G., et al.: Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth
factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine
mechanism contributing to angiogenesis. J. Cell. Biol. 141(7), 1659-1673 (1998)
78. Black, S.M., DeVol, J.M., Wedgwood, S.: Regulation of fibroblast growth factor-2
expression in pulmonary arterial smooth muscle cells involves increased reactive oxygen
species generation. Am. J. Physiol. Cell. Physiol. 294(1), C345-C354 (2008)
79. Griendling, K.K., Sorescu, D., Ushio-Fukai, M.: NAD(P)H oxidase: role in cardiovascular
biology and disease. Circ. Res. 86(5), 494-501 (2000)
80. Ushio-Fukai, M., et al.: Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular
endothelial growth factor-induced signaling and angiogenesis. Circ. Res. 91(12), 1160-1167
(2002)
81. Abid, M.R., et al.: Vascular endothelial growth factor induces manganese-superoxide
dismutase expression in endothelial cells by a Rac1-regulated NADPH oxidase-dependent
mechanism. FASEB J. 15(13), 2548-2550 (2001)
82. Colavitti, R., et al.: Reactive oxygen species as downstream mediators of angiogenic
signaling by vascular endothelial growth factor receptor-2/KDR. J. Biol. Chem. 277(5),
3101-3108 (2002)
83. Mata-Greenwood, E., et al.: Cyclic stretch increases VEGF expression in pulmonary arterial
smooth muscle cells via TGF-beta1 and reactive oxygen species: a requirement for
NAD(P)H oxidase. Am. J. Physiol. Lung Cell. Mol. Physiol. 289(2), L288-L289 (2005)
84. Connor, K.M., et al.: Mitochondrial H 2 O 2 regulates the angiogenic phenotype via PTEN
oxidation. J. Biol. Chem. 280(17), 16916-16924 (2005)
85. Marikovsky, M., et al.: Cu/Zn superoxide dismutase plays a role in angiogenesis. Int.
J. Cancer 97(1), 34-41 (2002)
86. Schreck, R., Rieber, P., Baeuerle, P.A.: Reactive oxygen intermediates as apparently widely
used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO
J. 10(8), 2247-2258 (1991)
87. Wang, G.L., Jiang, B.H., Semenza, G.L.: Effect of altered redox states on expression and
DNA-binding activity of hypoxia-inducible factor 1. Biochem. Biophys. Res. Commun.
212(2), 550-556 (1995)
88. Kietzmann, T., Gorlach, A.: Reactive oxygen species in the control of hypoxia-inducible
factor-mediated gene expression. Semin. Cell. Dev. Biol. 16(4-5), 474-486 (2005)
89. Kroll, J., Waltenberger, J.: The vascular endothelial growth factor receptor KDR activates
multiple signal transduction pathways in porcine aortic endothelial cells. J. Biol. Chem.
272(51), 32521-32527 (1997)
Search WWH ::




Custom Search