Biomedical Engineering Reference
In-Depth Information
8. Barkefors, I., et al.: Endothelial cell migration in stable gradients of vascular endothelial
growth factor A and fibroblast growth factor 2: effects on chemotaxis and chemokinesis.
J. Biol. Chem. 283(20), 13905-13912 (2008)
9. Dye, J., et al.: Distinct patterns of microvascular endothelial cell morphology are determined
by extracellular matrix composition. Endothelium-J Endoth 11(3-4), 151-167 (2004)
10. Gospodarowicz, D., Vlodavsky, I., Savion, N.: The extracellular matrix and the control of
proliferation of vascular endothelial and vascular smooth muscle cells. J. Supramol. Struct.
Cell 13(3), 339-372 (1980)
11. Nehls, V., Herrmann, R.: The configuration of fibrin clots determines capillary
morphogenesis and endothelial cell migration. Microvasc. Res. 51(3), 347-364 (1996)
12. Ruoslahti, E.: Specialization of tumour vasculature. Nat. Rev. Cancer 2(2), 83-90 (2002)
13. Ogunshola,
O.:
Neuronal
VEGF
expression
correlates
with
angiogenesis
in
postnatal
developing rat brain. Dev. Brain Res. 119(1), 139-153 (2000)
14. Laschke, M.W., Vollmar, B., Menger, M.D.: Inosculation: connecting the life-sustaining
pipelines. Tissue Eng. Part B-Rev 15(4), 455-465 (2009)
15. Tillet, E., et al.: N-cadherin deficiency impairs pericyte recruitment, and not endothelial
differentiation or sprouting, in embryonic stem cell-derived angiogenesis. Exp. Cell Res.
310(2), 392-400 (2005)
16. Boyden,
S.:
The
chemotactic
effect
of
mixtures
of
antibody
and
antigen
on
polymorphonuclear leucocytes. J. Exp. Med. 115, 453-466 (1962)
17. Zigmond, S.H.: Orientation chamber in chemotaxis. Methods Enzymol. 162, 65-72 (1988)
18. Zicha, D., Dunn, G.A., Brown, A.F.: A new direct-viewing chemotaxis chamber. J. Cell Sci.
99(4), 769-775 (1991)
19. Blow, N.: Cell migration: our protruding knowledge. Nat. Methods 4(7), 589-594 (2007)
20. Pankov, R., et al.: A Rac switch regulates random versus directionally persistent cell
migration. J. Cell Biol. 170(5), 793-802 (2005)
21. Chen, R.R., et al.: Integrated approach to designing growth factor delivery systems. FASEB J
21(14), 3896-3903 (2007)
22. Lin, F., Butcher, E.C.: T cell chemotaxis in a simple microfluidic device. Lab Chip 6(11),
1462-1469 (2006)
23. Walker, G.M.: Effects of flow and diffusion on chemotaxis studies in a microfabricated
gradient generator. Lab Chip 5(6), 611-618 (2005)
24. Dertinger, S.K.W., et al.: Generation of gradients having complex shapes using microfluidic
networks. Anal. Chem. 73(6), 1240-1246 (2001)
25. Song, J.W., Munn, L.L.: Fluid forces control endothelial sprouting. Proc. Nat. Acad. Sci.
U.S.A. 108(37), 15342-15347 (2011)
26. Urbich, C.: Shear stress-induced endothelial cell migration involves integrin signaling via the
fibronectin receptor subunits alpha5 and beta1. Arterioscler. Thromb. Vasc. Biol. 22(1),
69-75 (2002)
27. Saadi, W., et al.: Generation of stable concentration gradients in 2D and 3D environments
using a microfluidic ladder chamber. Biomed. Microdevices 9(5), 627-635 (2007)
28. Kim, T., Pinelis, M., Maharbiz, M.M.: Generating steep, shear-free gradients of small
molecules for cell culture. Biomed. Microdevices 11(1), 65-73 (2009)
29. Cheng, S.-Y., et al.: A hydrogel-based microfluidic device for the studies of directed cell
migration. Lab Chip 7(6), 763-769 (2007)
30. Shamloo, A., et al.: Endothelial cell polarization and chemotaxis in a microfluidic device.
Lab Chip 8(8), 1292-1299 (2008)
31. Berra, E., et al.: HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state
levels of HIF-1alpha in normoxia. EMBO J. 22(16), 4082-4090 (2003)
32. Neufeld, G., et al.: Vascular endothelial growth factor (VEGF) and its receptors. FASEB J
13(1), 9-22 (1999)
33. Helm, C.-L.E., et al.: Synergy between interstitial flow and VEGF directs capillary
morphogenesis in vitro through a gradient amplification mechanism. Proc. Nat. Acad. Sci.
U.S.A. 102(44), 15779-15784 (2005)
Search WWH ::




Custom Search