Biomedical Engineering Reference
In-Depth Information
collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis
via alphaV beta3 integrin. Cancer Cell 3(6), 589-601 (2003)
65. Hangai, M., Kitaya, N., Xu, J., Chan, C., Kim, J., Werb, Z., Ryan, S., Brooks, P.: Matrix
metalloproteinase-9-dependent exposure of a cryptic migratory control site in collagen is
required before retinal angiogenesis. Am. J. Path. 161(4), 1429-1437 (2002)
66. Chang, J., Javier, J., Chang, G., Oliveira, H., Azar, D.: Functional characterization of
neostatins, the MMP-derived, enzymatic cleavage products of type XVIII collagen. FEBS
Lett. 579, 3601-3606 (2005)
67. Heljasvaara, R., Nyberg, P., Luostarinen, J., Parikka, M., Heikkila, P., Rehn, M., Sorsa, T.,
Salo, T., Pihlajaniemi, T.: Generation of biologically active endostatin fragments from
human collagen XVIII by distinct matrix metalloproteases. Exp. Cell Res. 307(2), 292-304
(2005)
68. O'Reilly, M., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W., Flynn, E., Birkhead, J.,
Olsen, B., Folkman, J.: Endostatin: an endogenous inhibitor of angiogenesis and tumor
growth. Cell 88, 277-285 (1997)
69. Kim, Y., Jang, J., Lee, O., Yeon, J., Choi, E., Kim, K., Lee, S., Kwon, Y.: Endostatin
inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic
activity of matrix metalloproteinase 2. Cancer Res. 60, 5410-5413 (2000)
70. Vihinen, P., Kahari, V.-M.: Matrix metalloproteinases in cancer: Prognostic markers and
therapeutic targets. Int. J. Cancer 99, 157-166 (2002)
71. Hellstrom, M., Gerhardt, H., Kalen, M., Li, X., Eriksson, U., Wolburg, H., Betsholtz, C.:
Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis.
J. Cell Biol. 153(3), 543-554 (2001)
72. Gerhardt, H., Betsholtz, C.: Endothelial-pericyte interactions in angiogenesis. Cell Tissue
Res. 314(1), 15-23 (2003)
73. Lehti, K., Birkedal-Hansen, E.A.H., Holmbeck, K., Miyake, Y., Chun, T., Weiss, S.: An
MT1-MMP-PDGF
receptor-beta
axis
regulates
mural
cell
investment
of
the
microvasculature. Genes Dev. 19, 979-991 (2005)
74. Ghajar, C.M., Kachgal, S., Kniazeva, E., Mori, H., Costes, S.V., George, S.C., Putnam, A.J.:
Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms.
Exp. Cell Res. 316(5), 813-825 (2010)
75. Suri, C., Jones, P., Patan, S., Bartunkova, S., Mainsonpierre, P., Davis, S., Sato, T.,
Yancopoulos, G.: Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during
embryonic angiogenesis. Cell 87, 1171-1180 (1996)
76. Kraling, B., Wiederschain, D., Boehm, T., Rehn, M., Mulliken, J., Moses, M.: The role of
matrix metalloproteinase activity in the maturation of human capillary endothelial cells in
vitro. J. Cell Sci. 112(Pt 10), 1599-1609 (1999)
77. Saunders, W., Bohnsack, B., Faske, J., Anthis, N., Bayless, K., Hirschi, K., Davis, G.:
Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3.
J. Cell Biol. 175(1), 179-191 (2006)
78. Lafleur, M., Forsyth, P., Atkinson, S., Murphy, G., Edwards, D.: Perivascular cells regulate
endothelial membrane type-1 matrix metalloproteinase activity. Biochem. Biophys. Res.
Commun. 282, 463-473 (2001)
79. Edwards, D., Handsley, M., Pennington, C.: The ADAM metalloproteinases. Mol. Aspects
Med. 29(5), 258-289 (2008)
80. Roghani, M., Becherer, J., Moss, M., Atherton, R., Erdjument-Bromage, H., Arribas, J.,
Blackburn, R., Weskamp, G., Tempst, P., Blobel, C.: Metalloproteinase-disintegrin MDC9:
intracellular maturation and catalytic activity. J. Biol. Chem. 6, 3531-3540 (1999)
81. Howard, L., Maciewicz, R., Blobel, C.: Cloning and characterization of ADAM28: evidence
for autocatalytic pro-domain removal and for cell surface localization of mature ADAM28.
Biochem. J. 348(Pt 1), 21-27 (2000)
82. Schlomann, U., Wildeboer, D., Webster, A., Antropova, O., Zeuschner, D., Knight, C.,
Docherty, A., Lambert, M., Skelton, L., Jockusch, H., Bartsch, J.: The metalloprotease
Search WWH ::




Custom Search