Biomedical Engineering Reference
In-Depth Information
29. Murphy, L.M.: Mayo Clinic Cardiology, 3rd edn. Mayo Clinic Scientific Press, Rochester (2007)
30. Stenmark, K.R., McMurtry, I.F.: Vascular remodeling versus vasoconstriction in chronic
hypoxic pulmonary hypertension a time for reappraisal. Circ. Res. 97, 95-98 (2005)
31. Aaronson,
P.,
Robertson,
T.P.,
Knock,
G.A.,
Becker,
S.,
Lewis,
T.H.,
Snetkov,
V.,
Ward,
J.P.T.:
Hypoxic
pulmonary
vasoconstriction:
mechanisms
and
controversies.
J. Physiol. 270, 53-58 (2006)
32. Sweeney, M., Yuan, J.X.J.: Hypoxic pulmonary vasoconstriction: role of voltage-gated
potassium channels. Respir. Res. 1, 40-48 (2000)
33. Morrell, A.S., Archer, S.L., Dupuis, J., Jones, P.L., MacLean, M.R., McMutry, I.F.,
Stenmark, K.R., Thistlethwaite, P.A., Weissmann, N., Yuan, J.X.J., Weir, E.K.: Cellular and
molecuar basis of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 54, S20-S31 (2009)
34. Sanchez, O., Marcos, E., Perros, F., Fadel, E., Tu, L., Humbert, M., Dartevelle, P.,
Simonneau, G., Adnot, S., Eddahibi, S.: Role of endothelium-derived CC Chemokine Ligand
2 in idioplathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 176, 1041-
1047 (2007)
35. Veyssier-Belot, C., Cacoub, P.: Role of the endothelial and smooth muscle cells in
physiophathogy and treatment management of pulmonary hypertension. Cardio. Res., 44,
274-282 (1999)
36. Owens, G.K., Rabinovitch, P.S., Schwartz, S.M.: Smooth muscle cell hypertrophy versus
hyperplasia in hypertnesion. Proc. Natl. Acad. Sci. 78, 7759-7763 (1981)
37. Quinn, S.M.T.P., Soifer, S.J., Gutierrez, J.A.: Cyclic mechanical stretch induces VEGF and
FGF-2 expression in pulmonary vascular smooth muscle cells. Am. J. Physiol. Lung Cell.
Mol. Physiol. 282, L897-L903 (2002)
38. Lehoux, S., Tedgui, A.: Cellular mechanics and gene expression in blood vessels. J. Biomech.
36, 631-643 (2003)
39. Reneman, R.S., Arts, T., Hoeks, A.P.G.: Wall shear stress- an important determinant of
endothelial cell function and structure- in the arterial system in vivo. J. Vasc. Res. 43, 251-
269 (2006)
40. Albuquerque, W.C.M.L.C., Savla, U., Schnaper, H.W., Flozak, A.S.: Shear stress enhances
human endothelial cell wound closure in vitro. Am. J. Physiol. Heart Circ. Physiol. 279,
H293-H302 (2000)
41. Traub, O., Berk, B.C.: Laminar shear stress: mechanisms by which endothelial cells
transduce an arthoprotective force. Arterioscler. Thromb. Vasc. Biol. 18, 667-685 (1998)
42. Li, M., Stenmark, K.R., Shandas, R., Tan, W.: Effects of pathological flow on pulmonary artery
endothelial production of vasoactive mediators and growth factors. J. Vasc. Res. 46, 561-571 (2009)
43. O'Rourke, M.F., Hashimoto, J.: Mechanical factors in arterial aging: A clinical perspective.
JACC 50, 1-13 (2007)
44. Safar, M.E., Lacolley, P.: Disturbance of maro- and microcirculations : relations with pulse
pressure and cardiac organ damage. Am. J. Physiol. Heart Circ. Physiol. 293, H1-H7 (2007)
45. Pyke, K.E., Tschakovsky, M.E.: The relationship between shear stress and flow-mediated dilatation:
implications for the assessment of endothelial function. J. Physiol. 568(2), 357-369 (2005)
46. Budhiraja,
R.,
Tuder,
R.M.,
Hassoun,
P.M.:
Endothelial
dysfunction
in
pulmonary
hypertension. Circulation 109, 159-165 (2004)
47. Vanhoutte,
P.M.,
Feletou,
M.,
Taddei,
S.:
Endothelium-dependent
contractions
in
hypertension. Brithish J. Pharmacol 144, 449-458 (2005)
48. Giaid, A., Saleh, D.: Reduced expression of endothelial ntric oxide synthase in the lungs of
patients with pulmonary hypertension. N. Engl. J. Med. 333, 214-221 (1995)
49. Abranham, W., Raynolds, M.V., Gottschall, B., Badesch, D.B., Wynne, K.M., Groves, B.M.,
Lowes, B.D., Bristow, M.R., Perryman, B., Voelkel, N.F.: Importance of angiotensin-
converting enzyme in pulmonary hypertension. Cardiology 86, 9-15 (1995)
50. Du,
L.,
Sullivan,
D.C.:
Signaling
molecules
in
nonfamililial
pulmonary
hypertension.
N. Engl. J. Med. 348, 500-509 (2003)
Search WWH ::




Custom Search