Biomedical Engineering Reference
In-Depth Information
[28] J. Shao and E. Baltus, Effect of solute concentration on hindered diffusion in porous mem-
branes, AIChE Journal 46 (2000) 1307-1316
[29] G.K. Batchelor, Brownian diffusion of particles with hydrodynamic interaction, Journal of Fluid
Mechanics 74 (1976) 1
[30] B.D. Fair and A.M. Jamieson, Effect of electrodynamic interactions on the translational diffu-
sion of bovine serum albumin at finite concentration, Journal of Colloid and Interface Science 73
(1980) 130-135
[31] M. Sami Selim and M.A. Al-Naafa, Brownian diffusion of hard spheres at finite concentrations,
AIChE Journal 39 (1993) 3-16
[32] R. Krishna and J.A. Wesselingh, The Maxwell-Stefan approach to mass transfer, Chemical
Engineering Science 52 (1997) 861-911
[33] T.R. Noordman and J.A. Wesselingh, Transport of large molecules through membranes with
narrow pores: The Maxwell-Stefan description combined with hydrodynamic theory, Journal of
Membrane Science 210 (2002) 227-243
[34] T. Yamaguchi, S. Nakao, and S. Kimura, Plasma-graft filling polymerization: preparation of
a new type of pervaporation membrane for organic liquid mixtures, Macromolecules 24 (1991)
5522-5527
[35] J.G. Wijman, and R.W. Baker, The solute-diffusion model: A review, Journal of Membrane Science
107 (1995) 1-21
[36] P.J. Flory, Principles of Polymer Chemistry , Cornell University Press, London, 1953 (chapter XII)
[37] M.H. Cohen and D. Turnbuli, Molecular transport in liquids and glasses, Journal of Chemical
Physics 31 (1959) 1164-1169
[38] B. Amsden, Solute diffusion within hydrogels. Mechanisms and models, Macromolecules 31
(1998) 8382-8395
[39] H. Yasuda, L.D. Ikenberry, and C.E. Lamaze, Permeability of solutes through hydrated polymer
membranes: Part II, Permeability of water soluble organic solutes, Die Makromoleculare Chemie
125 (1969) 108-118
[40] H. Yasuda, C.E. Lamaze, and L.D. Ikenberry, Permeability of solutes through hydrated polymer
membranes: Part I. Diffusion of sodium chloride, Die Makromoleculare Chemie 118 (1968) 19-35
[41] H. Yasuda, A. Peterlin, C.K. Colton, K.A. Smith, and E.W. Merrill, Permeability of solutes
through hydrated polymer membranes: Part III. Theoretical background for the selectivity of
dialysis membranes, Die Makromolekulare Chemie 126 (1969) 177-186
[42] N.A. Peppas and C.T. Reinhart, Solute diffusion in swollen membranes: Part I. A new theory,
Journal of Membrane Science 15 (1983) 275-287
[43] C.T. Reinhart and N.A. Peppas, Solute diffusion in swollen membranes: Part II. Influence of
crosslinking on diffusive properties, Journal of Membrane Science 18 (1984) 227-239
[44] R.A. Robinson and R.H. Stokes, Electrolyte Solutions , second revised edition, Dover Publications,
ICN, Mineola, NY, 2002
[45] T. Canal and N.A. Peppas, Correlation between mesh size and equilibrium degree of swelling
of polymeric networks, Journal of Biomedical Materials Research 23 (1989) 1183-1193
[46] M. Tanya, A.M. Ende, and N.A. Peppas, Transport of ionizable drugs and proteins in Crosslinked
poly (acrylic acid) and poly(acrylic acid- co -2-hydroxyethylmethacrylate) hydrogels. I. Polymer
characterization, Journal of Applied Polymer Science 59 (1996) 673-685
[47] S.R. Lustig and N.A. Peppas, Solute diffusion in swollen membranes: IX. Scaling laws for solute
diffusion in gels, Journal of Applied Polymer Science 36 (1988) 735-747
[48] N.N. Peppas, H.J. Moynihan, and L.M. Lucht, The structure of highly crosslinked poly(2-hy-
droxyethyl methacrylate) hydrogels, Journal of Biomedical Materials Research 19 (1985) 397-411
[49] R.W. Korsmeyer, S.R. Lustig, and N.A. Peppas, Solute and penetrant diffusion in swellable
polymers: I. Mathematical modeling, Journal of Polymer Science : Polymer Physics Edition 24 (1986)
395-408
[50] R.W. Korsmeyer, E. Von Meerwall, and N.A. Peppas. Solute and penetrant diffusion in swellable
polymers: II. Verification of theoretical models, Journal of Polymer Science : Polymer Physics Edition
24 (1986) 409-434
Search WWH ::




Custom Search