Biomedical Engineering Reference
In-Depth Information
counter electrode was used. The Cole-Cole plot result is given by Figure 4.41. Pleskov
et al. [203], in the same year, researched the electrochemical behavior of DLC on p-type
silicon and glassy carbon substrate. From the electrochemical study, they proved that rea-
sonable admixture of Pt (10% platinum in DLC) made the film suitable for fabrication as
electrodes.
References
[1] J. R. Macdonald, Impedance Spectroscopy: Theory, Experiments and Applications, 2nd Ed., Edited by
Barsoukov, Wiley-Interscience 2005.
[2] J. E. Bauerle, Study of solid electrolyte polarization by a complex admittance method, The J.
Phys. Chem. Solids 1969, 30, 2657.
[3] C. M. Armstrong and F. Bezanilla, Charge movement associated with the opening and closing
of the activation gates of Na channels, J. Gen. Physiol . 1974, 63, 533-552.
[4] E. J. L. Schouler, M. Kleitz, E. Forest, E. Fernandez, and P. Fabry, Overpotential of H 2 -H 2 O, Ni/
YSZ electrodes in stream electrolyzers, Proceeding of the International Conference on Fast Ionic
Transport in Solids 1981, 5, 559-562.
[5] L. L. Hench and J. K. West, The sol-gel process, Chem. Rev . 1990, 90, 33-72.
[6] H. T. Ye, PhD Thesis, University College London, 2004.
[7] N. Khan, PhD Thesis, University College London, 1990.
[8] H. L. Tuller, Ionic conduction in nanocrystalline materials, Solid State Ionic 2000, 131, 143.
[9] J. Maier, Ionic conduction in space charge regions, Progress in Solid State Chemistry 1995, 23,
171-263.
[10] T. V. Dijk and A. J. Burggraaf, Gain boundary effects on ionic conductivity in ceramic Gd x Zr (1-x)
O (2-(x/2)) solid solutions, Phys. Stat. Sol. A 1981, 63, 229-240.
[11] M. J. Verkerk, B. J. Middelhuis, and A. J. Burggraat, Effect of grain boundaries on the conductiv-
ity of high-purity ZrO 2 -Y 2 O 3 ceramics, Solid State Ionics 1982, 6, 159-170.
[12] M. Gödickemeier, B. Michel, A. Orliukas, P. Bohac, K. Sasaki, and L. Gauckler, Effect of inter-
granular glass films on the electrical conductivity of 3Y-TZP, J. Mater. Res . 1994, 9, 1228.
[13] J. Fleig, The influence of non-ideal microstructure on the analysis of grain boundary imped-
ances, Solid State Ionics 2000, 131, 117-127.
[14] J. C. M'Peko, D. L. Spavieri, and M. F. de Souza, In situ characterization of the grain-boundary
electrical response of zirconia ceramics under uniaxial compressive stresses, Appl. Phys. Lett .
2002, 81, 2827.
[15] L.C. Nistor, J. V. Landury, V. G. Ralchnko, E. D. Obraztsova, and A. A. Smolin, Nanocrystalline
diamond films: transmission electron microscopy and Raman spectroscopy characterization,
Diam. Rel. Mater . 1997, 6, 159-168.
[16] V. V. Daniel, Dielectric Relaxation , Academic Press: London, 1967.
[17] I. M. Hodge, M. D. Ingram, and A. R. West, New method of analyzing the ac behavior of poly-
crystalline solid electrodes, J. Electroanal. Chem . 1975, 58, 429-432.
[18] A. Huanosta, O. A. Fregoso, and E. Amano, AC impedance analysis on crystalline layered and
polycrystalline bismuth titanate, J. Appl. Lett . 1990, 69, 404.
[19] M. M. Kumar, and Z. G. Ye, Dielectric and electric properties of donor- and acceptor-doped fer-
roelectric SrBi 2 Ta 2 O 9 , J. Appl. Lett . 2001, 90, 934.
[20] I. Garcia, J. S. Olías, F. A. Rueda, and A. J. Vázquez, Dielectric characterization of oxyacetylene
flame-deposited diamond thin films, Diam. Rel. Mater . 1997, 6, 1210-1218.
[21] R. F. Davis, Deposition and characterization of diamond, silicon carbide and gallium nitride
thin films, J. Cryst. Growth . 1994, 137, 161-169.
 
Search WWH ::




Custom Search