Biomedical Engineering Reference
In-Depth Information
36. Niraj S and Yeow JTW. Carbon nanotubes for biomedical applications. IEEE Transactions on
Nanobioscience , 4 (2005) 180-195.
37. Ijima S. Helical microtubules of graphitic carbon. Nature , 354 (1991) 56-58.
38. Dresselhaus MS. Fullerenes: down the straight and narrow. Nature , 358 (1998) 195-196.
39. Dresselhaus MS, Dresselhaus G, and Eklund PC. Science of Fullerenes and Carbon Nanotubes .
New York, NY: Academic Press, 1996.
40. Wang J. Carbon nanotube based electrochemical biosensors: a review. Electroanalysis , 17 (2005)
7-14.
41. Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, and Beyers R. Cobalt-
catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature , 363 (1993)
305-305.
42. Ijima S, Ajayan PM, and Ichihashi T. Growth model for carbon nanotubes. Physical Review
Letters, 69 (1992) 3100-3103.
43. Ebbesen TW and Ajayan PM. Large scale synthesis of carbon nanotubes. Nature , 358 (1992)
220-221.
44. Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, and Beyers R. Cobalt-catalyzed
growth of carbon nanotubes with single-atomic-layer walls. Nature , 363 (1993) 605-607.
45. Iijima S and Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature , 363 (1993)
603-605.
46. Takahashi S, Ikuno T, Oyama T, Honda SI, Katayama M, Hirao T, and Oura K. Synthesis and
characterization of carbon nanotubes grown on carbon particles by using high vacuum laser
ablation. Journal of Vaccum Society of Japan , 45 (2002) 609-612.
47. Vanderwal RL, Berger GM, and Ticich TM. Carbon nanotube synthesis in a flame using laser
ablation for in situ catalyst generation. Applied Physics A , 77 (2003) 885-889.
48. Braidy N, El Khakani MA, and Botton GA Carbon nanotubular structures synthesis by means
of ultraviolet laser ablation. Journal of Materials Research , 17 (2002) 2189-2192.
49. Chatterjee AK, Sharon M, Banerjee R, and Neumann-Spallart M. CVD synthesis of carbon
nanotubes using a finely dispersed cobalt catalyst and their use in double layer electrochemical
capacitors. Electrochimica Acta , 48 (2003) 3439-3446.
50. Park D, Kim YH, and Lee JK. Synthesis of carbon nanotubes on metallic substrates by a sequen-
tial combination of PECVD and thermal CVD. Carbon , 41 (2003) 1025-1029.
51. Chaisitsak S, Yamada A, and Konagai M. Hot filament enhanced CVD synthesis of carbon
nanotubes by using a carbon filament. Diamond and Related Materials , 13 (2004) 438-444.
52. Kroto HW, Heath JR, O'Brien SC, Curl RF, and Smalley RE. C 60 : buckminsterfullerene. Nature ,
318 (1985) 162-163.
53. Sivaraman N, Dhamodaran R, Kaliappan I, Srinivassan TG, Rao PRV, and Mathews CK.
Solubility of C60 in organic solvents. Journal of Organic Chemistry , 57 (1992) 6077-6079.
54. Ruoff RS, Tse DS, Malhotra R, and Lorents DC. Solubility of fullerene (C60) in a variety of sol-
vents. Journal of Physical Chemistry , 97 (1993) 3379-3383.
55. Partha R and Conyers JL. Biomedical applications of functionalized fullerene-based nanomate-
rials. International Journal of Nanomedicine , 4 (2009) 261-275.
56. Wilson SR. Biological Aspects of Fullerenes. Fullerenes: Chemistry, Physics and Technology . New
York, NY: John Wiley & Sons, 2000.
57. Da Ros T and Prato M. Medicinal chemistry with fullerenes and fullerene derivatives. Chemical
Communications , 8 (1999) 663-669.
58. Jensen AW, Wilson SR, and Schuster DI. Biological applications of fullerenes—a review.
Bioorganic and Medicinal Chemistry , 4 (1996) 767-779.
59. Kratschmer W, Lamb LD, Fostiropoulos K, and Huffman DR. Solid C 60 : a new form of carbon.
Nature , 347 (1990) 354-358.
60. Alekseyev NI and Dyuzhev GA. Fullerene formation in arc discharge. Carbon , 41 (2003)
1343-1348.
61. Howard, JB, McKinnon JT, Makarovsky Y, Lafleur AL, and Johnson ME. Fullerenes C 60 and C 70
in lames.  Nature , 352 (1991) 139-141.
© 2011 by Taylor & Francis Group, LLC
Search WWH ::




Custom Search