Biomedical Engineering Reference
In-Depth Information
5. Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries.
Comput Meth Appl Mech Eng 158:155-196
6. Quarteroni A, Tuveri M, Veneziani A (2003) Computational vascular fluid dynamics: prob-
lems, models and methods. Comput Vis Sci 2:163-197
7. Leuprecht A, Kozerke S, Peter Boesiger P, Perktold K (2003) Blood flow in the human
ascending aorta: a combined MRI and CFD study. J Eng Math 47(3):387-404
8. Kaazempur-Mofrad MR, Isasi AG, Younis HF, Chan RC, Hinton DP, Sukhova G, LaMuraglia
GM, Lee RT, Kamm RD (2004) Characterization of the atherosclerotic carotid bifurcation
using MRI, finite element modeling and histology. Ann Biomed Eng 32(7):932-946
9. Schumann C, Neugebauer M, Bade R, Preim B, Peitgen H-O (2008) Implicit vessel surface
reconstruction for visualization and CFD simulation. Int J Comput Assist Radiol Surg
2:275-286
10. Himeno R (2003) Blood flow simulation toward actual application at hospital. In: The 5th
Asian computational fluid dynamics, Korea
11. Perktold K, Resch M, Florian H (1991) Pulsatile non-Newtonian flow characteristics in a three-
dimensional human carotid bifurcation model. ASME J Biomech Eng 113:463-475
12. Abraham F, Behr M, Heinkenschloss M (2005) Shape optimization in steady blood flow: a
numerical study of non-Newtonian effects. Comput Meth Biomech Biomed Eng 8(2):127-137
13. Huang H, Modi VJ, Seymour BR (1995) Fluid mechanics of stenosed arteries. Int J Eng Sci
33:815-828
14. Probst M, L ulfesmann M, B ucker HM, Behr M, Bischof CH (2010) Sensitivity of shear rate in
artificial grafts using automatic differentiation. Int J Numer Meth Fluids 62:1047-1062
15. Babuska I (1973) The finite element method with Lagrangian multipliers. Numer Math
20:179-192
16. Brezzi F (1974) on the existence, uniqueness and approximation of saddle-point problems ar
sing from Lagrangian multipliers. RAIRO Anal Numer 8(R2):129-151
17. Babuska I, Osborn J, Pitkaranta J (1980) Analysis of mixed methods using, mesh dependent
norms. Math Comp 35:1039-1062
18. Perktold K, Rappitsch G (1995) Mathematical modeling of local arterial flow and vessel
mechanics. In: Crolet J, Ohayon R (eds) Computational methods for fluid structure interaction,
vol 306, Pitman research notes in mathematics. Harlow, Longman, pp 230-245
19. Chorin AJ (1968) Numerical solution of the Navier-Stokes equations. Math Comp 22:745-762
20. Courant R (1943) Variational methods for the solution of problems of equilibrium and
vibration. Bull Amer Math Soc 49:1-23
21. Hughes TJR, Franca LP, Balestra M (1986) A new finite element method for computational
fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin
formulation of the Stokes problem accommodating equal order interpolations. Comput Meth
Appl Mech Eng 59:85-99
22. Hughes TJR, Franca LP, Hulbert GM (1989) A new finite element method for computational
fluid dynamics: VIII the Galerkin/least squares method for advective diffusive equations.
Comput Meth Appl Mech Eng 73:173-189
23. Ku DN, Giddens DP, Zarins CZ, Glagov S (1985) Pulsatile flow and atherosclerosis in the
human carotid bifurcation. Arterioscleresis 5:293-302
24. Schaffer JD (1985) Multi-objective optimization with vector evaluated genetic algorithms. In:
Proceedings of the 1st international conference of genetic algorithms, pp 93-100
25. Marler RT, Arora JS (2009) The weighted sum method for multi-objective optimization: new
insights. Struct Multidisc Optim. doi: 10.1007/s00158-009-0460-7
26. Kim IY, de Weck OL (2006) Adaptive weighted sum method for multiobjective optimization:
a new method for Pareto. Struct Multidiscip Optim 31:105-116
27. Coello CAC, Lamont GB, Veldhuizen DAV (2007) Evolutionary algorithms for solving multi-
objective problems. Springer, New York
28. Ant onio CC, Castro CF, Sousa LC (2005) Eliminating forging defects using genetic algorithms.
Mater Manuf Process 20:509-522
Search WWH ::




Custom Search