Graphics Programs Reference
In-Depth Information
b(n) = b(n)/d(n); % Back substitution
b(n-1) = b(n-1)/d(n-1) - e(n-1)*b(n);
fork=n-2:-1:1
b(k) = b(k)/d(k) - e(k)*b(k+1) - f(k)*b(k+2);
end
x=b;
EXAMPLE 2.9
As aresult of Gauss elimination, a symmetric matrix A wastransformed to the upper
triangular form
4
2
1
0
0
3
3
/
2
1
U
=
00 3
3
/
2
00
035
/
12
Determine the original matrix A .
Solution First we find L in the decomposition A
=
LU . Dividing each row of U by its
diagonal element yields
1
1
/
21
/
4
0
0
1
1
/
21
/
3
L T
=
0
0
1
1
/
2
0
0
0
1
Therefore, A
=
LU becomes
1
0
0
0
4
2
1
0
1
/
2
1
00
0
3
3
/
2
1
A
=
/
/
/
1
4
1
2
1 0
00 3
3
2
0
1
/
3
1
/
21
00
035
/
12
4
210
2
4
21
=
1
2
4
2
0
1
2
4
EXAMPLE 2.10
Determine L and D that result fromDoolittle's decomposition A
LDL T of the sym-
=
metric matrix
3
33
A
=
351
31 0
Search WWH ::




Custom Search