Graphics Programs Reference
In-Depth Information
The differentialequationsofmotion of the mass-spring systemare
k (
2 u 1
+
u 2 )
=
m u 1
k ( u 1
2 u 2 +
u 3 )
=
3 m u 2
k ( u 2
2 u 3 )
=
2 m u 3
where u i ( t ) is the displacementofmass i fromits equilibrium position and k is
the spring stiffness.Substituting u i ( t )
=
y i sin
ω
t , weobtain the matrix eigenvalue
problem
=
2
1
0
y 1
y 2
y 3
1 00
0 3 0
002
y 1
y 2
y 3
2
m
ω
12
1
k
0
12
Determine the circular frequencies
ω
and the corresponding relative amplitudes
y i of vibration.
14.
u 1
u n
u 2
k 3
k n
k 1
k 2
m
m
m
The figure shows n identical masses connectedbyspringsofdifferentstiffnesses.
The equationgoverning free vibration of the systemis Au
=
ω
2 u , where
ω
m
is the
circular frequency and
k 1 +
k 2
k 2
0
0
···
0
k 2
k 2
+
k 3
k 3
0
···
0
0
k 3
k 3 +
k 4
k 4
···
0
A
=
.
.
.
. . .
. . .
. . .
0
···
0
k n 1
k n 1 +
k n
k n
0
···
0
0
k n
k n
k 1 k 2 ···
k n T
Giventhe spring stiffness array k
=
,writeaprogramthatcomputes
the N lowest eigenvalues
λ =
m
ω
2 and the corresponding eigenvectors.Runthe
programwith N
=
4 and
400
400 200 T
k
=
400
400
0
.
2 400
kN/m
Note that the systemis weakly coupled, k 4 being small.Do the resultsmake sense?
15.
L
x
n
1
2
Search WWH ::




Custom Search