Graphics Programs Reference
In-Depth Information
Solution Referring to Eqs. (9.50), we get
a 1 =
a 2 =
a 3 =
4
4
5
r 1
=
2
r 2
=
4
r 3
=
2
Hence
λ min
min( a i
r i )
=
4
4
=
0
λ max
max( a i +
r i )
=
4
+
4
=
8
Bracketing Eigenvalues
The Sturm sequence property togetherwith Gerschgorin's theoremprovides uscon-
venient tools forbracketing each eigenvalueofa symmetrictridiagonal matrix.
eValBrackets
The function eValBrackets brackets the m smallest eigenvalues of a symmetric
tridiagonal matrix A
=
[ c
\
d
\
c ]. It returns the sequence r 1 ,
r 2 ,...,
r m + 1 , whereeach
interval ( r i ,
r i + 1 ) containsexactly oneeigenvalue. The algorithmfirst finds the global
boundson the eigenvalues by Gerschgorin's theorem. The method of bisectionin
conjunctionwith the Sturm sequence propertyis thenused to determine the upper
boundson
λ m m 1 ,...,λ 1 in thatorder.
functionr=eValBrackets(c,d,m)
%BracketseachofthemlowesteigenvaluesofA=[c\d\c]
% so that there is one eivenvalue in [r(i), r(i+1)].
%USAGE:r=eValBrackets(c,d,m).
[eValMin,eValMax]= gerschgorin(c,d); % Find global limits
r = ones(m+1,1); r(1) = eValMin;
% Search for eigenvalues in descending order
fork=m:-1:1
% First bisection of interval (eValMin,eValMax)
eVal = (eValMax + eValMin)/2;
h = (eValMax - eValMin)/2;
fori=1:100
% Find number of eigenvalues less than eVal
num
eVals(c,d,eVal);
% Bisect again & find the half containing eVal
_
eVals = count
_
Search WWH ::




Custom Search