Graphics Programs Reference
In-Depth Information
Problems 6-10 Solve the givenboundary value problemwith the finite difference
methodusing n
=
21.
6. y =
xy , y (1)
=
1
.
5 y (2)
=
3.
7. y +
2 y +
xe 1 x .
y
=
0, y (0)
=
0, y (1)
=
1. Exact solutionis y
=
x 2 y +
xy +
8.
y
=
0, y (1)
=
0, y (2)
=
0
.
638961. Exact solutionis y
=
sin(ln x ).
y =
y 2 sin y , y (0)
9.
=
0, y (
π
)
=
1.
y +
2 y (2 xy +
2, y (1)
10.
y )
=
0, y (0)
=
1
/
=−
2
/
9. Exact
solution s
y
=
x 2 ) 1 .
(2
+
11.
w 0
I 0
I 0
x
L /4
L /4
L /2
I 1
v
The simply supportedbeam consists of three segments with the moments of
inertia I 0 and I 1 as shown. A uniformlydistributed load of intensity w 0 acts over
the middle segment. Modeling only the left half of the beam, wecan show that
the differentialequation
d 2 v
dx 2
M
E I
=−
for the displacement v is
x
L
L
4
in 0
<
x
<
d 2 v
dx 2
w 0 L 2
4 E I 0 ×
=−
x
L
2 in L
4
2 x
I 0
I 1
1
4
L
2
L
<
x
<
Introducing the dimensionless variables
x
L
E I 0
w 0 L 4 v
I 1
I 0
ξ =
y
=
γ =
changes the differentialequation to
1
4 ξ
1
4
in 0
<ξ<
d 2 y
d
=
2 in 1
4
2
2
ξ
1
4
1
4
1
2
ξ
ξ
<ξ<
γ
with the boundary conditions
ξ = 1 / 2 =
dy
d
y
| ξ = 0 =
0
ξ
 
Search WWH ::




Custom Search