Graphics Programs Reference
In-Depth Information
At the mid-span the boundary conditions areequivalentto y n + 1 =
y n 1 and
2 h 3 (
y n + 2 =
2 y n + 1
2 y n 1 +
y n 2 +
1
/
2)
Substitutioninto Eqs. (8.13d) and (8.13e) yields
y n 3
4 y n 2 +
7 y n 1
4 y n =
0
(d)
h 3
2 y n 2
8 y n 1 +
6 y n =
(e)
The coefficient matrix of Eqs. (a)-(e) can be madesymmetric by dividing Eq. (e) by 2.
The result is
1
00
y 1
y 2
y 3
.
y n 2
y n 1
y n
0
0
0
.
0
0
0
7
4
1
0
4
6
4
1
. . .
. . .
. . .
. . .
. . .
=
1
4
6
4
1
1
4
7
4
5 h 3
1
4
3
0
.
The abovesystem of equationscan be solvedwith the decomposition and back
substitutionroutines in the functions LUdec5 and LUsol5 —see Art.2.4.Recall that
these functions work with the vectors d , e and f thatform the diagonals of upper the
half of the coefficient matrix. The program that sets up and solves the equations is
function fDiff8
% Finite difference method for the 4th-order,
% linear boundary value problem in Example 8.8.
xStart = 0; xStop = 0.5; % Range of integration.
n=21; %Numberofmeshpoints.
freq = 1; % Printout frequency.
h = (xStop - xStart)/(n-1);
x = linspace(xStart,xStop,n)';
[d,e,f,b] = fDiffEqs(x,h,n);
[d,e,f] = LUdec5(d,e,f);
printSol(x,LUsol5(d,e,f,b),freq)
function [d,e,f,b] = fDiffEqs(x,h,n)
% Sets up the pentadiagonal coefficient matrix and the
% constant vector of the finite difference equations.
d = ones(n,1)*6;
Search WWH ::




Custom Search