Graphics Programs Reference
In-Depth Information
Second-Order Differential Equation
Consider the second-orderdifferentialequation
y =
y )
f ( x
,
y
,
with the boundary conditions
or y ( a )
y ( a )
= α
= α
or y ( b )
y ( b )
= β
= β
Approximating the derivatives at the mesh points by finite differences, the prob-
lembecomes
f x i ,
,
y i 1
2 y i +
y i + 1
y i + 1
y i 1
=
y i ,
i
=
1
,
2
,...,
n
(8.9)
h 2
2 h
y 2
y 0
y 1 = α
or
= α
(8.10a)
2 h
y n + 1
y n 1
y n = β
or
= β
(8.10b)
2 h
Note the presence of y 0 and y n + 1 , which are associatedwith points outside the solution
domain ( a
b ). This “spillover” can beeliminatedbyusing the boundary conditions.
But before we dothat, let us rewrite Eqs. (8.9) as
,
h 2 f x 1 ,
y 2
y 0
y 0
2 y 1 +
y 2
y 1 ,
=
0
(a)
2 h
h 2 f x i ,
y i + 1
y i 1
y i 1
2 y i +
y i + 1
y i ,
=
0,
i
=
2
,
3
,...,
n
1
(b)
2 h
h 2 f x n
y n + 1
y n 1
y n 1
2 y n
+
y n + 1
,
y n
,
=
0
(c)
2 h
The boundary conditionson y areeasilydealt with:Eq. (a) issimplyreplaced
by y 1
0. If y are prescribed, weobtain
α =
0 and Eq. (c) is replacedby y n
β =
fromEqs. (8.10) y 0 =
, which are then substitutedinto
Eqs. (a) and (c), respectively. Hence we finish up with n equations in the unknowns
y i , i
y 2
2 h
α
and y n + 1 =
y n 1 +
2 h
β
=
1
,
2
...,
n :
y 1 α =
0
if y ( a )
= α
(8.11a)
2 y 1 +
2 y 2
h 2 f ( x 1 ,
y 1
2 h
α =
0 if y ( a )
= α
)
h 2 f x i ,
y i + 1
y i 1
y i 1
2 y i +
y i + 1
y i ,
=
0
i
=
2
,
3
,...,
n
1
(8.11b)
2 h
y n β =
0
if y ( b )
= β
(8.11c)
h 2 f ( x n ,
0 if y ( b )
2 y n 1
2 y n
y n
+
2 h
β =
= β
)
Search WWH ::




Custom Search