Graphics Programs Reference
In-Depth Information
The coefficients appearing in these formulas are not unique. The tables belowgive the
coefficients proposedbyCash and Karp 18 which areclaimed to be an improvement
overFehlberg'soriginal values.
i
A i
B i j
C i
D i
37
378
2825
27 648
1
−−− − −
1
5
1
5
2
−− − −
0
0
3
10
3
40
9
40
250
621
18 575
48384
3
3
5
3
10
9
10
6
5
125
594
13 525
55 296
4
11
54
5
2
70
27
35
27
277
14 336
5
1
0
7
8
1631
55296
175
512
575
13824
44275
110592
253
4096
512
1771
1
4
6
Table 7.1. Cash-Karp coefficients for Runge-Kutta-Fehlberg formulas
The solutionis advancedwith the fifth-order formulainEq. (7.19a). The fourth-
order formulais used only implicitlyinestimating the truncation error
6
E ( h )
=
y 5 ( x
+
h )
y 4 ( x
+
h )
=
( C i
D i ) K i
(7.20)
i
=
1
Since Eq. (7.20) actually applies to the fourth-order formula, ittendstooverestimate
the errorinthe fifth-order formula.
Note that E ( h ) is avector, its components E i ( h ) representing the errors in the
dependent variables y i . This brings up the question: what is the errormeasure e ( h )
that we wish to control? There is nosingle choice that works well in all problems. If
we wanttocontrol the largest componentof E ( h ), the errormeasure wouldbe
e ( h )
=
max
i
|
E i ( h )
|
(7.21)
18
J.R. Cash and A.H. Carp, ACM Transactions on Mathematical Software 16 , 201-222 (1990).
Search WWH ::




Custom Search