Graphics Programs Reference
In-Depth Information
EXAMPLE 7.6
R e
v 0
r
H
A spacecraft islaunchedat an altitude H
=
772 kmabovesea level with the speed
v 0 =
6700 m/s in the direction shown. The differentialequations describing the mo-
tion of the spacecraft are
2 r ˙
θ
GM e
r 2
2
r ˙
¨
r
=
θ
θ =−
r
where r and
are the polar coordinates of the spacecraft. The constants involvedin
the motionare
θ
10 11 m 3 kg 1 s 2
G
=
6
.
672
×
=
universal gravitationalconstant
10 24
M e =
5
.
9742
×
kg
=
mass of the earth
R e =
6378
.
14km
=
radius of the earth atsea level
(1) Derive the first-orderdifferentialequations and the initialconditions of the form
y
=
,
=
b . (2) Use the fourth-order Runge-Kuttamethod to integrate the
equationsfrom the timeoflaunch until the spacecraft hits the earth.Determine
F ( t
y ), y (0)
θ
at
the impact site.
Solution of Part (1) Wehave
GM e = 6
10 11 5
10 24 =
10 14 m 3 s 2
.
672
×
.
9742
×
3
.
9860
×
Letting
=
y 1
y 2
y 3
y 4
r
r
˙
y
=
θ
the equivalent first-order equations become
=
y 1
y 2
y 3
y 4
y 1
y 0 y 3
10 14
y 0
3
.
9860
×
/
y
=
y 3
2 y 1 y 3
/
y 0
Search WWH ::




Custom Search