Graphics Programs Reference
In-Depth Information
where
x
∂ξ
y
∂ξ
J (
ξ,η
)
=
(6.44a)
x
∂η
y
∂η
isknown as the Jacobian matrix of the mapping. Substituting fromEqs. (6.41)
and (6.42) and differentiating, we find that the components of the Jacobian matrix
are
1
4
J 11 =
[
(1
η
) x 1 +
(1
η
) x 2 +
(1
+ η
) x 3
(1
+ η
) x 4 ]
1
4
J 12 =
(1
η
) y 1 +
(1
η
) y 2 +
(1
+ η
) y 3
(1
+ η
) y 4 ]
(6.44b)
[
1
4
J 21 =
[
(1
ξ
) x 1
(1
+ ξ
) x 2 +
(1
+ ξ
) x 3 +
(1
ξ
) x 4 ]
1
4
J 22 =
[
(1
ξ
) y 1
(1
+ ξ
) y 2 +
(1
+ ξ
) y 3 +
(1
ξ
) y 4 ]
Wecan nowwrite
1
1
,
=
ξ,η
,
ξ,η
|
ξ,η
|
ξ
η
f ( x
y ) dx dy
f [ x (
)
y (
)]
J (
)
d
d
(6.45)
A
1
1
Since the right-hand side integral istaken over the “standard” rectangle, itcan be
evaluatedusing Eq. (6.40).Replacing f (
) in Eq. (6.40) by the integrand in Eq. (6.45),
we get the following formula for Gauss-Legendrequadratureoveraquadrilateral
region:
ξ,η
n
n
A i A j f x (
ξ i j ) J (
ξ i j )
I
=
ξ i j )
,
y (
(6.46)
i
=
1
j
=
1
The
coordinates of the integrationpoints and theweights canagainbeobtained
from Table 6.3.
ξ
and
η
gaussQuad2
The function gaussQuad2 computes A
y ) dx dy overaquadrilateral element
with Gauss-Legendrequadratureofintegration order n . The quadrilateral is de-
finedbythe arrays x and y , which contain the coordinates of the four corners
f ( x
,
Search WWH ::




Custom Search