Graphics Programs Reference
In-Depth Information
the polynomialhave been found, the polynomial and its first two derivatives can be
evaluated efficientlybythe function evalpoly listedinArt. 4.7.
Cubic Spline Interpolant
Duetoits stiffness, cubicspline is agoodglobal interpolant;moreover, it iseasy to
differentiate. The first stepistodetermine the second derivatives k i of the spline at
the knots by solving Eqs. (3.12). Thiscan be done with the function splineCurv as
explainedinArt. 3.3. The first and second derivatives are then computed from
3( x
x i + 1 )
x i + 1 ) 2
k i
6
f i , i + 1 ( x )
=
( x i
x i
x i + 1
3( x
x i + 1 )
k i + 1
6
x i ) 2
y i
y i + 1
x i + 1
( x i
+
(5.10)
x i
x i
x i + 1
k i x
x i + 1
x
x i
f
i
=
x i + 1
1 ( x )
k i + 1
(5.11)
,
i
+
x i
x i
x i + 1
which areobtainedbydifferentiation of Eq. (3.10).
EXAMPLE 5.4
Given the data
x
1
.
5
1
.
9
2
.
1
2
.
4
2
.
6
3
.
1
f ( x )
1
.
0628
1
.
3961
1
.
5432
1
.
7349
1
.
8423
2
.
0397
compute f (2) and f (2) using (1) polynomial interpolation over three nearest-
neighborpoints, and (2) naturalcubicspline interpolantspanning all the datapoints.
Solution of Part (1) Let the interpolant passing through the points at x
=
1
.
9, 2
.
1 and
a 3 x 2 . The normalequations, Eqs. (3.23), of the least-squares
2
.
4 be P 2 ( x )
=
a 1 +
a 2 x
+
fit are
=
x i x i
y i
y i x i
y i x i
n
a 1
a 2
a 3
x i x i x i
x i x i x i
After substituting the data, we get
=
3
6
.
4
13
.
78
a 1
a 2
a 3
4
.
6742
6
.
4
13
.
78
29
.
944
10
.
0571
13
.
78 29
.
944 65
.
6578
21
.
8385
Search WWH ::




Custom Search