Graphics Programs Reference
In-Depth Information
n
S
W 2
i
b =−
2
( y i
a
bx i ) x i =
0
i
=
1
or
n
n
n
W 2
i
W i x i =
W i y i
+
a
b
(3.26a)
i
=
1
i
=
1
i
=
1
n
n
n
W i x i +
W i x i
W i x i y i
a
b
=
(3.26b)
i
=
1
i
=
1
i
=
1
Dividing Eq. (3.26a) by W i and introducing the weighted averages
W i x i
W 2
i
W i y i
W 2
i
x
=
y
=
(3.27)
weobtain
a
=
y
b x
(3.28a)
Substituting Eq. (3.28a) into Eq. (3.26b) and solving for b yields after some algebra
i = 1 W i y i ( x i
x )
b
=
i = 1 W i x i ( x i
(3.28b)
x )
Note that Eqs. (3.28) aresimilar to Eqs. (3.19)for unweighteddata.
Fitting exponential functions
A special application of weighted linear regressionarises in fitting exponentialfunc-
tionstodata. Consideras an example the fitting function
ae bx
f ( x )
=
Normally, the least-squares fit would lead to equationsthat are nonlinear in a and b .
But if we fitln y rather than y , the problemistransformed to linear regression: fit the
function
F ( x )
=
ln f ( x )
=
ln a
+
bx
to the datapoints ( x i ,
=
,
,...,
n . Thissimplification comes at aprice: least-
squares fit to the logarithmof the datais not the same asleast-squares fit to the original
data. The residuals of the logarithmic fit are
ln y i ), i
1
2
R i =
ln y i
F ( x i )
=
ln y i
ln a
bx i
(3.29a)
whereas the residuals usedinfitting the original dataare
ae bx i
r i
=
y i
f ( x i )
=
y i
(3.29b)
Search WWH ::




Custom Search