Graphics Reference
In-Depth Information
an improved version of Chi2 in terms of accuracy, removing the user parame-
ter choice. We check and measure the actual improvement. In [ 122 ], the authors
develop an intense theoretical and analytical study concerning Naïve Bayes and
propose PKID and FFD according to their conclusions. Thus, we corroborate that
PKID is the best suitable method for Naïve Bayes and even for KNN . Finally, we
may note that CAIM is one of the simplest discretizers and its effectiveness has
also been shown in this study.
References
1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the
20th Very Large Data Bases conference (VLDB), pp. 487-499 (1994)
2. Aha, D.W. (ed.): Lazy Learning. Springer, New York (2010)
3. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.:
KEELdata-mining software tool: data set repository, integration of algorithms and experimental
analysis framework. J. Multiple-Valued Logic Soft Comput. 17 (2-3), 255-287 (2011)
4. Alcalá-Fdez, J., Sánchez, L., García, S., del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J.,
Romero, C., Bacardit, J., Rivas, V.M., Fernández, J.C., Herrera, F.: KEEL: a software tool to
assess evolutionary algorithms for data mining problems. Soft Comput. 13 (3), 307-318 (2009)
5. An, A., Cercone, N.: Discretization of Continuous Attributes for Learning Classification Rules.
In: Proceedings of the Third Conference on Methodologies for Knowledge Discovery and Data
Mining, pp. 509-514 (1999)
6. Au, W.H., Chan, K.C.C., Wong, A.K.C.: A fuzzy approach to partitioning continuous attributes
for classification. IEEE Trans. Knowl. Data Eng. 18 (5), 715-719 (2006)
7. Augasta, M.G., Kathirvalavakumar, T.: A new discretization algorithm based on range coef-
ficient of dispersion and skewness for neural networks classifier. Appl. Soft Comput. 12 (2),
619-625 (2012)
8. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/
ml
9. Bakar, A.A., Othman, Z.A., Shuib, N.L.M.: Building a new taxonomy for data discretization
techniques. In: Proceedings on Conference on Data Mining and Optimization (DMO), pp.
132-140 (2009)
10. Bay, S.D.: Multivariate discretization for set mining. Knowl. Inf. Syst. 3 , 491-512 (2001)
11. Berka, P., Bruha, I.: Empirical comparison of various discretization procedures. Int. J. Pattern
Recognit. Artif. Intell. 12 (7), 1017-1032 (1998)
12. Berrado, A., Runger, G.C.: Supervised multivariate discretization in mixed data with ran-
dom forests. In: ACS/IEEE International Conference on Computer Systems and Applications
(ICCSA), pp. 211-217 (2009)
13. Berzal, F., Cubero, J.C., Marín, N., Sánchez, D.: Building multi-way decision trees with numer-
ical attributes. Inform. Sci. 165 , 73-90 (2004)
14. Bondu, A., Boulle, M., Lemaire, V.: A non-parametric semi-supervised discretization method.
Knowl. Inf. Syst. 24 , 35-57 (2010)
15. Boulle, M.: Khiops: a statistical discretization method of continuous attributes. Mach. Learn.
55 , 53-69 (2004)
16. Boullé, M.: MODL: a bayes optimal discretization method for continuous attributes. Mach.
Learn. 65 (1), 131-165 (2006)
17. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees.
Chapman and Hall/CRC, New York (1984)
18. Butterworth, R., Simovici, D.A., Santos, G.S., Ohno-Machado, L.: A greedy algorithm for
supervised discretization. J. Biomed. Inform. 37 , 285-292 (2004)
 
 
Search WWH ::




Custom Search