Biomedical Engineering Reference
In-Depth Information
65. Renkin EM (1988) Transport pathways and processes. In: Simionescu N, Simionescu M (eds)
Endothelial cell biology. Plenum, New York, pp 51-68
66. Roberts WG, Palade GE (1995) Increased microvascular permeability and endothelial
enestration induced by vascular endothelial growth factor. J Cell Sci 108:2369-2379
67. Salmon AH, Neal CR, Sage LM, Glass CA, Harper SJ, Bates DO (2009) Angiopoietin-1 alters
microvascular permeability coefficients in vivo via modification ofendothelial glycocalyx.
Cardiovasc Res 83(1):24-33
68. Salmon AH, Satchell SC (2012) Endothelial glycocalyx dysfunction in disease: albuminuria
and increased microvascular permeability. J Pathol 226(4):562-574
69. Shen S, Fan J, Cai B, Lv Y, Zeng M, Hao Y, Giancotti FG, Fu BM (2010) Vascular endothelial
growth factor enhances mammary cancer cell adhesion to endothelium in vivo . J Exp Physiol
95:369-379
70. Schluter K, Gassmann P, Enns A, Korb T, Hemping-Bovenkerk A, Holzen J, Haier J (2006)
Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with
different metastatic potential. Am J Pathol 169:1064-1073
71. Slattery MJ, Liang S, Dong C (2005) Distinct role of hydrodynamic shear in leukocyte-
facilitated tumor cell extravasation. Am J Physiol 288:C831-C839
72. Squire JM, Chew M, Nneji G, Neal C, Barry J, Michel CC (2001) Quasi-periodic substructure
in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering?
J Struct Biol 136:239-255
73. Steeg PS, Theodorescu D (2008) Metastasis: a therapeutic target for cancer. Nat Clin Pract
Oncol 5(4):206-219
74. Steinbauer M, Guba M, Cernaianu G, K¨hl G, Cetto M, Kunz-Schugart LA, Gcissler EK, Falk
W, Jauch KW (2003) GFP-transfected tumor cells are useful in examining early metastasis
in vivo, but immune reaction precludes long-term development studies in immunocompetent
mice. Clin Exp Metastasis 20:135-141
75. Sugihara-Seki M (2006) Transport of spheres suspended in the fluid flowing between hexago-
nally arranged cylinders. J Fluid Mech 551:309-321
76. Sugihara-Seki M, Akinaga T, Itano T (2008) Flow across microvessel walls through the
endothelial surface glycocalyx and the interendothelial cleft. J Fluid Mech 601:229-252
77. Sugihara-Seki M, Akinaga T, Itano T (2010) Effects of electric charge on osmotic flow across
periodically arranged circular cylinders. J Fluid Mech 664:174-192
78. Tarbell JM, Pahakis MY (2006) Mechanotransduction and the glycocalyx. J Intern Med
259:339-350
79. Tsay R, Weinbaum S (1991) Viscous flow in a channel with periodic cross-bridging fibers of
arbitrary aspect ratio and spacing. J Fluid Mech 226:125-148
80. van den Berg BM, Vink H, Spaan JA (2003) The endothelial glycocalyx protects against
myocardial edema. Circ Res 92:592-594
81. van Hinsbergh VW, Nieuw Amerongen GP (2002) Intracellular signalling involved
in modulating human endothelial barrier function. J Anat 200:549-560
82. Vink H, Duling BR (1996) Identification of distinct luminal domains for macromolecules,
erythrocytes, and leukocytes within mammalian capillaries. Circ Res 79:581-589
83. Ward BJ, Bauman KF, Firth JA (1988) Interendothelial junctions of cardiac capillaries in rats:
their structure and permeability properties. Cell Tissue Res 252:57-66
84. Weinbaum S, Tsay R, Curry FE (1992) A three-dimensional junction-pore-matrix model for
capillary permeability. Microvasc Res 44:85-111
85. Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial
glycocalyx layer. Annu Rev Biomed Eng 9:121-167
86. Wu HM, Huang Q, Yuan Y, Grange HJ (1996) VEGF induces NO dependent hyperper-
meability in coronary venules. Am J Physiol 40:H2735-H2739
87. Yen WY, Cai B, Zeng M, Tarbell JM, Fu BM (2012) Quantification of the endothelial surface
glycocalyx on rat and mouse blood vessels. Microvasc Res 83(3):337-346
Search WWH ::




Custom Search