Biomedical Engineering Reference
In-Depth Information
Acknowledgments The author would like to thank the support from NSF CBET 0754158,
and NIH CA153325-01 and CA137788-01.
References
1. Adamson RH, Lenz JF, Zhang X, Adamson GN, Weinbaum S, Curry FE (2004) Oncotic
pressures opposing filtration across non-fenestrated rat microvessels. J Physiol 557:889-907
2. Adamson RH, Michel CC (1993) Pathways through the inter-cellular clefts of frog mesenteric
capillaries. J Physiol 466:303-327
3. Akinaga T, Sugihara-Seki M, Itano T (2008) Electrical charge effect on osmotic flow through
pores. J Phys Soc Jpn 77:053401
4. Anderson JL, Malone DM (1974) Mechanism of osmotic flow in porous membranes. Biophys J
14:957-982
5. Antonetti DA, Wolpert EB, DeMaio L, Harhaj NS, Scaduto RC Jr (2002) Hydrocortisone
decreases retinal endothelial cell water and solute flux coincident with increased content and
decreased phosphorylation of occludin. J Neurochem 80:667-677
6. Arkill KP, Knupp C, Michel CC, Neal CR, Qvortrup K, Rostgaard J, Squire JM (2011) Similar
endothelial glycocalyx structures in microvessels from a range of mammalian tissues:
evidence for a common filtering mechanism? Biophys J 101:1046-1056
7. Bates DO, Curry FE (1996) Vascular endothelial growth factor increases hydraulic conductiv-
ity of isolated perfused microvessels. Am J Physiol 271(40):H2520-H2528
8. Bates DO, Heald RI, Curry FE, Williams B (2001) Vascular endothelial growth factor
increases Rana vascular permeability and compliance by different signalling pathways.
J Physiol 533(Pt. 1):263-272
9. Bhalla G, Deen WM (2009) Effects of charge on osmotic reflection coefficients
of macromolecules in porous membranes. J Colloid Interface Sci 333:363-372
10. Brandy JF, Bossis G (1988) Stokesian dynamics. Annu Rev Fluid Mech 20:111
11. Brenner H, Adler PM (1982) Dispersion resulting from flow through spatially periodic media:
II Surface and intraparticle transport. Phil Trans R Soc Lond A 307(149):149-200
12. Brenner W, Langer P, Oesch F, Edgell CJ, Wieser RJ (1995) Tumor cell-endothelium adhesion
in an artificial venule. Anal Biochem 225:213-219
13. Bundgaard M (1984) The three-dimensional organization of tight junctions in a capillary
endothelium revealed by serial-section electron microscopy. J Ultmstruct Res 88:1-17
14. Cancel LM, Fitting A, Tarbell JM (2007) In vitro study of LDL transport under pressurized
(convective) conditions. Am J Physiol 293:H126-H132
15. Chen B, Fu BM (2004) An electrodiffusion-filtration model for effects of surface glycocalyx
on microvessel permeability to macromolecules. ASME J Biomech Eng 126:614-624
16. Chotard-Ghodsnia R, Haddad O, Leyrat A, Drochon A, Verdier C, Duperray A (2007)
Morphological analysis of tumor cell/endothelial cell interactions under shear flow. J Biomech
40:335-344
17. Constantinescu A, Spaan JA, Arkenbout EK, Vink H, Vanteeffelen JW (2011) Degradation of
the endothelial glycocalyx is associated with chylomicron leakage in mouse cremaster muscle
microcirculation. Thromb Haemost 105(5):790-801
18. Curry FE, AdamsonRH (2012) Endothelial glycocalyx: permeability barrier
and
mechanosensor. Ann Biomed Eng 40(4):828-39
19. Curry FE, Michel CC (1980) A fiber matrix model of capillary permeability. Microvasc Res
20:96-99
20. Damiano ER, Stace TM (2002) Amechano-electrochemical model of radial deformation of the
capillary glycocalyx. Biophys J 82:1153-1175
Search WWH ::




Custom Search