Cryptography Reference
In-Depth Information
39. Mansour, Y., Nisan, N., Tiwari, P.: The computational complexity of universal
hashing. In: Proceedings of the Twenty-Second Annual ACM Symposium on The-
ory of Computing-STOC 1990, pp. 235-243. ACM, New York (1990)
40. McGrew, D., Viega, J.: The security and performance of the Galois/Counter Mode
(GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004.
LNCS, vol. 3348, pp. 343-355. Springer, Heidelberg (2004)
41. Meyer, C., Matyas, S.: Cryptography: A New Dimension in Computer Data Secu-
rity. John Wiley & Sons, Chichester (1982)
42. Preneel, B., Van Oorschot, P.: MDx-MAC and building fast MACs from hash
functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1-14.
Springer, Heidelberg (1995)
43. Preneel, B., Van Oorschot, P.: On the security of iterated message authentication
codes. IEEE Transactions on Information theory 45(1), 188-199 (1999)
44. Rogaway, P.: Bucket hashing and its application to fast message authentication.
Journal of Cryptology 12(2), 91-115 (1999)
45. Rogaway, P., Bellare, M., Black, J.: OCB: A Block-Cipher Mode of Operation for
Ecient Authenticated Encryption. ACM Transactions on Information and System
Security 6(3), 365-403 (2003)
46. Rogaway, P., Black, J.: PMAC: Proposal to NIST for a parallelizable message
authentication code (2001)
47. Stinson, D.: Universal hashing and authentication codes. Designs, Codes and Cryp-
tography 4(3), 369-380 (1994)
48. van Tilborg, H.: Encyclopedia of cryptography and security. Springer, Heidelberg
(2005)
49. Wegman, M., Carter, J.: New classes and applications of hash functions. In: 20th
Annual Symposium on Foundations of Computer Science-FOCS 1979, pp. 175-182.
IEEE, Los Alamitos (1979)
50. Wegman, M., Carter, L.: New hash functions and their use in authentication and
set equality. Journal of Computer and System Sciences 22(3), 265-279 (1981)
51. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Transport Layer Protocol. Tech-
nical report, RFC 4253 (2006)
A
Proof of Lemma 3
Proof. Throughout this proof, random variables will be represented by bold
font symbols, whereas the corresponding non-bold font symbols represent spe-
cific values that can be taken by these random variables. Let the secret key
K = k 1 ||
Z p computed according to
equation (1), and any plaintext message M , the following holds:
k 2 ||···||
k B
be fixed. Then, for any tag τ
= M )=Pr
=
B− 1
1
p ,
k i m i ) k 1
Pr(
τ
= τ
| M
r
=( τ
(15)
B
i =1
where m i denotes the i th block of the message M . Equation (15) holds by
the assumption that r is drawn uniformly from
Z p . The existence of k 1
B
,the
multiplicative inverse of k B
in the integer field
Z p , is a guaranteed since k B
is
not the zero element. Furthermore, as a direct consequence of the fact that
Z p is
 
Search WWH ::




Custom Search