Biomedical Engineering Reference
In-Depth Information
dots. This is reflected in the luminescence of individual DQDs and four-wave mixing
signals from DQD ensembles. One of such manifestations is a two-rate decay of
the PL and FWM signal, due to the presence of two eigenstates with different
decay rates. Another manifestation of collective spontaneous emission dynamics
is occupation trapping and spontaneous appearance of inter-dot coherence.
The interplay of radiative and phonon-related effects results in a nontrivial
dynamics due to the phonon-induced redistribution of occupations between the
bright and dark excitonic eigenstates. As a result, the exciton lifetime becomes
temperature dependent. Under certain conditions this dependence may be non-
monotonic and counter-intuitive, with longer life times at higher temperatures.
Many of the special properties of DQD systems predicted by the theory are
manifested in the results of appropriate optical measurements, which may allow one
to characterize DQD systems by analyzing the peculiarities of experimental data.
Phonon-induced and radiative decoherence is also an essential limiting factor for
quantum-coherent applications, e.g. in the field of quantum information processing.
Finally, understanding the fundamental physical mechanisms that govern the optical
properties of double-dot systems is an important step towards understanding of the
collective emission from larger QD ensembles [ 24 ].
Acknowledgements This work was supported in parts by the Polish National Centre for Science
(DEC-2011/01/B/ST3/02415) and by the TEAM programme of the Foundation for Polish Science,
co-financed from the European Regional Development Fund.
References
1. Rolon, J.E., Ulloa, S.E.: Phys. Rev. B 82 (11), 115307 (2010).
DOI 10.1103/PhysRevB.82.
115307
2. Unold, T., Mueller, K., Lienau, C., Elsaesser, T., Wieck, A.D.: Phys. Rev. Lett. 94 (13), 137404
(2005)
3. Gywat, O., Burkard, G., Loss, D.: Phys. Rev. B 65 , 205329 (2002)
4. Goryca, M., Kazimierczuk, T., Nawrocki, M., Golnik, A., Gaj, J.A., Kossacki, P., Wojnar,
P., Karczewski, G.: Phys. Rev. Lett. 103 (8), 087401 (2009). DOI 10.1103/PhysRevLett.103.
087401
5. Xie, Q., Madhukar, A., Chen, P., Kobayashi, N.P.: Phys. Rev. Lett. 75 (13), 2542 (1995)
6. Solomon, G.S., Trezza, J.A., Marshall, A.F., Harris, J.S. Jr.: Phys. Rev. Lett. 76 (6), 952 (1996)
7. Gerardot, B., Shtrichman, I., Hebert, D., Petroff, P.: J. Cryst. Growth 252 (1-3), 44 (2003)
8. Fafard, S., Wasilewski, Z.R., Allen, C.N., Picard, D., Spanner, M., McCaffrey, J.P., Piva, P.G.:
Phys. Rev. B 59 (23), 15368 (1999)
9. Gerardot, B.D., Strauf, S., de Dood, M.J.A., Bychkov, A.M., Badolato, A., Hennessy, K., Hu,
E.L., Bouwmeester, D., Petroff, P.M.: Phys. Rev. Lett. 95 (13), 137403 (2005)
10. Ortner, G., Yugova, I., Baldassarri H oger von H ogersthal, G., Larionov, A., Kurtze, H.,
Yakovlev, D.R., Bayer, M., Fafard, S., Wasilewski, Z., Hawrylak, P., Lyanda-Geller, Y.B.,
Reinecke, T.L., Babinski, A., Potemski, M., Timofeev, V.B., Forchel, A.: Phys. Rev. B 71 (12),
125335 (2005)
11. Szafran, B., Chwiej, T., Peeters, F.M., Bednarek, S., Adamowski, J., Partoens, B.: Phys. Rev.
B 71 , 205316 (2005)
12. Szafran, B.: Acta Phys. Polon. A 114 (5), 1013 (2008)
Search WWH ::




Custom Search