Biomedical Engineering Reference
In-Depth Information
References
1. Allen, C.D., Okada, T., Tang, H.L., Cyster, J.G.: Imaging of germinal center selection events
during affinity maturation. Science 315 , 528-531 (2007)
2. Althaus, C.L., De Vos, A.S., De Boer, R.J.: Reassessing the human immunodeficiency virus
type 1 life cycle through age-structured modeling: Life span of infected cells, viral generation
time, and basic reproductive number, R0. J. Virol. 83 , 7659-7667 (2009)
3. Bajenoff, M., Egen, J.G., Koo, L.Y., Laugier, J.P., Brau, F., Glaichenhaus, N., Germain, R.N.:
Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes.
Immunity 25 , 989-1001 (2006)
4. Bajenoff, M., Glaichenhaus, N., Germain, R.N.: Fibroblastic reticular cells guide T
lymphocyte entry into and migration within the splenic T cell zone.
J. Immunol. 181 ,
3947-3954 (2008)
5. Balagopalan, L., Sherman, E., Barr, V.A., Samelson, L.E.: Imaging techniques for assaying
lymphocyte activation in action. Nat. Rev. Immunol. 11 , 21-33 (2011)
6. Baldazzi, V., Castiglione, F., Bernaschi, M.: An enhanced agent based model of the immune
system response. Cell. Immunol. 244 , 77-79 (2006)
7. Bauer, A.L., Beauchemin, C.A., Perelson, A.S.: Agent-based modeling of host-pathogen
systems: The successes and challenges. Inf. Sci. 179 , 1379-1389 (2009)
8. Beauchemin, C.: Probing the effects of the well-mixed assumption on viral infection
dynamics. J. Theor. Biol. 242 , 464-477 (2006)
9. Beauchemin, C., Samuel, J., Tuszynski, J.: A simple cellular automaton model for influenza
A viral infections. J. Theor. Biol. 232 , 223-234 (2005)
10. Beltman, J.B., Maree, A.F., Lynch, J.N., Miller, M.J., de Boer, R.J.: Lymph node topology
dictates T cell migration behavior. J. Exp. Med. 204 , 771-780 (2007)
11. Beltman, J.B., Maree, A.F., de Boer, R.J.:
Analysing immune cell migration.
Nat. Rev.
Immunol. 9 , 789-798 (2009)
12. Bernaschi, M., Castiglione, F.: Selection of escape mutants from immune recognition during
HIV infection. Immunol. Cell Biol. 80 , 307-313 (2002)
13. Betts, M.R., Nason, M.C., West, S.M., De Rosa, S.C., Migueles, S.A., Abraham, J.,
Lederman, M.M., Benito, J.M., Goepfert, P.A., Connors, M., Roederer, M., Koup, R.A.: HIV
nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood
107 , 4781-4789 (2006)
14. Bocharov, G.A., Romanyukha, A.A.: Mathematical model of antiviral immune response. III.
Influenza A virus infection. J. Theor. Biol. 167 , 323-360 (1994)
15. Bogle, G., Dunbar, P.R.: Simulating T-cell motility in the lymph node paracortex with a
packed lattice geometry. Immunol. Cell Biol. 86 , 676-687 (2008)
16. Bogle, G., Dunbar, P.R.: Agent-based simulation of T-cell activation and proliferation within
a lymph node. Immunol. Cell Biol. 88 , 172-179 (2010)
17. Bousso, P., Bhakta, N.R., Lewis, R.S., Robey, E.: Dynamics of thymocyte-stromal cell
interactions visualized by two-photon microscopy. Science 296 , 1876-1880 (2002)
18. Burkhead, E.G., Hawkins, J.M., Molinek, D.K.: A dynamical study of a cellular automata
model of the spread of HIV in a lymph node. Bull. Math. Biol. 71 , 25-74 (2009)
19. Castiglione, F., Poccia, F., D'Offizi, G., Bernaschi, M.: Mutation, fitness, viral diversity, and
predictive markers of disease progression in a computational model of HIV type 1 infection.
AIDS Res. Hum. Retroviruses 20 , 1314-1323 (2004)
20. Castiglione, F., Pappalardo, F., Bernaschi, M., Motta, S.: Optimization of HAART with
genetic algorithms and agent-based models of HIV infection. Bioinformatics 23 , 3350-3355
(2007)
21. Chen, H.Y., Di Mascio, M., Perelson, A.S., Ho, D.D., Zhang, L.: Determination of virus burst
size in vivo using a single-cycle SIV in rhesus macaques. Proc. Natl. Acad. Sci. U.S.A. 104 ,
19079-19084 (2007)
Search WWH ::




Custom Search