Biomedical Engineering Reference
In-Depth Information
29. Ledzewicz, U., Schattler, H.: Multi-input optimal control problems for combined tumor anti-
angiogenic and radiotherapy treatments. J. Optim. Theor. Appl. - JOTA 153 , 195-224 (2012),
doi:10.1007/s10957-011-9954-8, published online: 16 November 2011
30. Ledzewicz, U., Munden, J., Schattler, H.: Scheduling of anti-angiogenic inhibitors for Gom-
pertzian and logistic tumor growth models. Discrete Continuous Dyn. Syst. Ser. B 12 , 415-439
(2009)
31. Ledzewicz, U., Marriott, J., Maurer, H., Schattler, H.: Realizable protocols for optimal
administration of drugs in mathematical models for novel cancer treatments. Math. Med. Biol.
27 , 157-179 (2010), doi:10.1093/imammb/dqp012
32. Ledzewicz, U., Maurer, H., Schattler, H.: Minimizing tumor volume for a mathematical model
of anti-angiogenesis with linear pharmacokinetics. In: Diehl, M., Glineur, F., Jarlebring, E.,
Michiels, W. (eds.) Recent Advances in Optimization and its Applications in Engineering,
pp. 267-276. Springer, Berlin (2010)
33. Marusic, M., Bajzer, A., Freyer, J.P., Vuk-Povlovic, S.: Analysis of growth of multicellular
tumor spheroids by mathematical models. Cell Prolif. 27 , 73ff (1994)
34. McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.: Mathematical modelling of dynamic
adaptive tumour-induced angiogenesis: Clinical implications and therapeutic targeting strate-
gies. J. Theor. Biol. 241 , 564-589 (2006)
35. Mombach, J.C.M., Lemke, N., Bodmann, B.E.J., Idiart, M.A.P.: A mean-field theory of cellular
growth. Europhys. Lett. 59 , 923-928 (2002)
36. Norton, L.: A Gompertzian model of human breast cancer growth. Canc. Res. 48 , 7067-7071
(1988)
37. Norton, L., Simon, R.: Growth curve of an experimental solid tumor following radiotherapy.
J. Nat. Canc. Inst. 58 , 1735-1741 (1977)
38. Norton, L., Simon R.: The Norton-Simon hypothesis revisited. Canc. Treat. Rep. 70 , 163-169
(1986)
39. d'Onofrio, A.: A general framework for modelling tumor-immune system competition and
immunotherapy: Mathematical analysis and biomedial inferences. Physica D 208 , 202-235
(2005)
40. d'Onofrio, A.: Rapidly acting antitumoral antiangiogenic therapies. Phys. Rev. E Stat. Nonlin.
Soft Matter Phys. 76 , 031920 (2007)
41. d'Onofrio, A.: Fractal growth of tumors and other cellular populations: Linking the mechanistic
to the phenomenological modeling and vice versa. Chaos, Solitons and Fractals 41 , 875-880
(2009)
42. d'Onofrio, A., Gandolfi, A.: Tumour eradication by antiangiogenic therapy: Analysis and
extensions of the model by Hahnfeldt et al. Math. Biosci. 191 , 159-184 (2004)
43. d'Onofrio, A., Gandolfi, A.: The response to antiangiogenic anticancer drugs that inhibit
endothelial cell proliferation, Appl. Math. and Comp. 181 , 1155-1162 (2006)
44. d'Onofrio, A., Gandolfi, A.: A family of models of angiogenesis and anti-angiogenesis anti-
cancer therapy. Math. Med. Biol. 26 , 63-95 (2009)
45. d'Onofrio, A., Gandolfi, A.: Chemotherapy of vascularised tumours: role of vessel density and
the effect of vascular “pruning”. J. Theor. Biol. 264 , 253-265 (2010)
46. d'Onofrio, A., Gandolfi, A.: Resistance to anti-tumor chemotherapy due to bounded-noise
transitions. Phys. Rev. E. 82 , (2010) Art.n. 061901, doi:10.1103/PhysRevE.82.061901
47. d'Onofrio, A., Gandolfi, A., Rocca, A.: The dynamics of tumour-vasculature interaction
suggests low-dose, time-dense antiangiogenic schedulings. Cell Prolif. 42 , 317-329 (2009)
48. d'Onofrio, A., Ledzewicz, U., Maurer, H., Schattler, H.: On optimal delivery of combination
therapy for tumors. Math. Biosci. 222 , 13-26 (2009), doi:10.1016/j.mbs.2009.08.004
49. d'Onofrio, A., Fasano, A., Monechi, B.: A generalization of Gompertz law compatible with
the Gyllenberg-Webb theory for tumour growth Math. Biosci. 230 (1), 45-54 (2011)
50. O'Reilly, M.S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W.S., Flynn, E., Birkhead,
J.R., Olsen, B.R., Folkman, J.: Endostatin: An endogenous inhibitor of angiogenesis and
tumour growth. Cell 88 , 277-285 (1997)
Search WWH ::




Custom Search