Biomedical Engineering Reference
In-Depth Information
5. Brenner, D.J., Hall, E.J., Huang, Y., Sachs, R.K.: Optimizing the time course of brachytherapy
and other accelerated radiotherapeutic protocols. Int. J. Radiat. Oncol. Biol. Phys. 29 , 893-901
(1994)
6. Browder, T., Butterfield, C.E., Kraling, B.M., Shi, B., Marshall, B., O'Reilly, M.S., Folkman,
J.: Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-
resistant cancer. Canc. Res. 60 , 1878-86 (2000)
7. Colleoni, M., Rocca, A., Sandri, M.T., Zorzino, L., Masci, G., Nole, F., Peruzzotti, G.,
Robertson, C., Orlando, L., Cinieri, S., de Braud, F., Viale, G., Goldhirsch, A.: Low-dose
oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumour activity and
correlation with vascular endothelial growth factor levels. Ann. Oncol. 13 , 73-80 (2002)
8. Ergun, A., Camphausen, K., Wein, L.M., Optimal scheduling of radiotherapy and angiogenic
inhibitors, Bull. of Math. Biology, 65 , 407-424 (2003)
9. Folkman,
J.:
Tumor
angiogenesis:
Therapeutic
implications.
New
Engl.
J.
Med.
295 ,
1182-1196 (1971)
10. Folkman, J.: Antiangiogenesis: New concept for therapy of solid tumors. Ann. Surg. 175 ,
409-416 (1972)
11. Folkman, J.: Opinion - Angiogenesis: an organizing principle for drug discovery? Nature Rev.
Drug. Disc. 6 , 273-286 (2007)
12. Fowler, J.F.: The linear-quadratic formula and progress in fractionated radiotherapy, Br.
J. Radiol. 62 , 679-694 (1989)
13. Frame, D.: New strategies in controlling drug resistance. J. Manag. Care Pharm. 13 , 13-17
(2007)
14. Goldie, J.H., Coldman, A.J.: A mathematic model for relating the drug sensitivity of tumors to
their spontaneous mutation rate. Canc. Treat. Rep. 63 , 1727-1733 (1979)
15. Guiot, C., Degiorgis, P.G., Delsanto, P.P., Gabriele, P., Deisboecke, T.S.: Does tumor growth
follow a 'universal law'? J. Theor. Biol. 225 , 147-151 (2003)
16. Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L.: Tumor development under angiogenic sig-
naling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy.
Canc. Res. 59 , 4770-4775 (1999)
17. Hart, D., Shochat, E., Agur, Z.: The growth law of primary breast cancer as inferred from
mammography screening trials data. Br. J. Canc. 78 , 382-387 (1999)
18. Jain, R.K., Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for
combination therapy. Nat. Med. 7 , 987-989 (2001)
19. Jain, R.K., Munn, L.L.: Vascular normalization as a rationale for combining chemotherapy
with antiangiogenic agents. Princ. Practical Oncol. 21 , 1-7 (2007)
20. Kerbel, R.S.: A cancer therapy resistant to resistance. Nature 390 , 335-336 (1997)
21. Kerbel, R.S.: Tumor angiogenesis: Past, present and near future. Carcinogensis 21 , 505-515
(2000)
22. Kerbel, R., Folkman, J.: Clinical translation of angiogenesis inhibitors. Nat. Rev. Canc. 2 ,
727-739 (2002)
23. Kimmel, M., Swierniak, A.: Control theory approach to cancer chemotherapy: benefiting
from phase dependence and overcoming drug resistance. In: Tutorials in Mathematical
Bioscences III: Cell Cycle, Proliferation, and Cancer, Lecture Notes in Mathematics, vol. 1872,
pp. 185-221. Springer, Berlin (2006)
24. Ledzewicz, U., Schattler, H.: Optimal bang-bang controls for a 2-compartment model in cancer
chemotherapy. J. Optim. Theor. Appl. - JOTA 114 , 609-637 (2002)
25. Ledzewicz, U., Schattler, H.: Analysis of a cell-cycle specific model for cancer chemotherapy,
J. Biol. Syst. 10 , 183-206 (2002)
26. Ledzewicz, U., Schattler, H.: Anti-angiogenic therapy in cancer treatment as an optimal control
problem, SIAM J. Contr. Optim. 46 (3), 1052-1079 (2007)
27. Ledzewicz, U., Schattler, H.: Optimal and suboptimal protocols for a class of mathematical
models of tumor anti-angiogenesis. J. Theor. Biol. 252 , 295-312 (2008)
28. Ledzewicz, U., Schattler, H.: Singular controls and chattering arcs in optimal control problems
arising in biomedicine. Contr. Cybern. 38 , 1501-1523 (2009)
Search WWH ::




Custom Search