Biomedical Engineering Reference
In-Depth Information
79. Kohandel, M., Kardar, M., Milosevic, M., Sivaloganathan, S.: Dynamics of tumor growth
and combination of anti-angiogenic and cytotoxic therapies. Phys. Med. Biol. 52 , 3665-3677
(2007)
80. Kozusko, F., Chen, P., Grant, S.G., Day, B.W., Panetta, J.C.: A mathematical model of in vitro
cancer cell growth and treatment with the antimitotic agent curacin a. Math. Biosci. 170 (1),
1-16 (2001)
81. Laird, A.: Dynamics of tumour growth. Br. J. Canc. 13 , 490-502 (1964)
82. Lasota, A., Mackey, M.: Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, 2nd
edn. Springer, New York (1994)
83. Ledzewicz, U., Schttler, H.: Optimal controls for a model with pharmacokinetics maximizing
bone marrow in cancer chemotherapy. Math. Biosci. 206 , 320-342 (2007)
84. Ledzewicz, U., Maurer, H., Schaettler, H.: Optimal and suboptimal protocols for a mathe-
matical model for tumor anti-angiogenesis in combination with chemotherapy. Math. Biosci.
Eng. 8 , 307-323 (2011)
85. Ledzewicz, U., Maurer, H., Schaettler, H.: Optimal and suboptimal protocols for a mathe-
matical model for tumor anti-angiogenesis in combination with chemotherapy. Math. Biosci.
Eng. 8 (2), 307-323 (2011)
86. Lehmann, E., Casella, G.: Theory of point estimation. Springer Texts in Statistics, 2nd edition,
Springer, New York (1998)
87. Levi, F.: Cancer chronotherapeutics. Special issue Chronobiol. Int. 19 , 1-19 (2002)
88. Levi, F.: Chronotherapeutics: the relevance of timing in cancer therapy. Canc. Causes Contr.
17 , 611-621 (2006)
89. Levi, F.: The circadian timing system: A coordinator of life processes. implications for the
rhythmic delivery of cancer therapeutics. IEEE-EMB Magazine 27 , 17-20 (2008)
90. Levi, F., Altinok, A., Clairambault, J., Goldbeter, A.: Implications of circadian clocks for the
rhythmic delivery of cancer therapeutics. Phil. Trans. Roy. Soc. A 366 , 3575-3598 (2008)
91. Levi, F., Okyar, A., Dulong, S., Innominato, P., Clairambault, J.: Circadian timing in cancer
treatments. Ann. Rev. Pharmacol. Toxicol. 50 , 377-421 (2010)
92. Levi, F., Schibler, U.: Circadian rhythms: Mechanisms and therapeutic implications. Ann.
Rev. Pharmacol. Toxicol. 47 , 493-528 (2007)
93. Ljung, L.: System Identification - Theory for the User, 2nd edn. PTR Prentice Hall, Upper
Saddle River, N.J. (1999)
94. Lupi, M., Matera, G., Branduardi, D., D'Incalci, M., Ubezio, P.: Cytostatic and cytotoxic
effects of topotecan decoded by a novel mathematical simulation approach. Canc. Res. 64 ,
2825-2832 (2004)
95. Lupi, M., Cappella, P., Matera, G., Natoli, C., Ubezio, P.: Interpreting cell cycle effects of
drugs: the case of melphalan. Canc. Chemother. Pharmacol. 57 , 443-457 (2006)
96. Martin, R.: Optimal control drug scheduling of cancer chemotherapy. Automatica 28 ,
1113-1123 (1992)
97. Martin, R.B., Fisher, M.E., Minchin, R.F., Teo, K.L.: Low-intensity combination chemother-
apy maximizes host survival time for tumors containing drug-resistant cells. Math. Biosci.
110 , 221-252 (1992)
98. Martin, R.B., Fisher, M.E., Minchin, R.F., Teo, K.L.: Optimal control of tumor size used to
maximize survival time when cells are resistant to chemotherapy. Math. Biosci. 110 , 201-219
(1992)
99. Maurer, H., B uskens, C., Kim, J.-H.R., Kaya, C.Y.: Optimization methods for the verification
of second order sufficient conditions for bang-bang controls. Optim. Contr. Appl. Meth. 26 (3),
129-156 (2005)
100. Mauro, M.J., O'Dwyer, M., Heinrich, M.C., Druker, B.J.: STI571: A paradigm of new agents
for cancer therapeutics. J. Clin. Oncol. 20 , 325-334 (2002)
101. McElwain, D., Ponzo, P.: A model for the growth of a solid tumor with non-uniform oxygen
consumption. Math. Biosci. 35 , 267-279 (1977)
102. McKendrick, A.: Applications of mathematics to medical problems. Proc. Edinburgh Math.
Soc. 54 , 98-130 (1926)
Search WWH ::




Custom Search