Biomedical Engineering Reference
In-Depth Information
56. Fister, K.R., Panetta, J.C.: Optimal control applied to cell-cycle-specific cancer chemotherapy.
SIAM J. Appl. Math. 60 (3), 1059-1072 (2000)
57. Frieboes, H.B., Edgerton, M.E., Fruehauf, J.P., F.Rose, R.A.J., Worrall, L.K., Gatenby, R.A.,
Ferrari, M., Cristini, V.: Prediction of drug response in breast cancer using integrative
experimental/computational modeling. Canc. Res. 69 , 4484-4492 (2009)
58. Gatenby, R.: A change of strategy in the war on cancer. Nature 459 , 508-509 (2009)
59. Gatenby, R., Gawlinski, E.: A reaction-diffusion model of cancer invasion. Canc. Res. 56 ,
5745-5753 (1996)
60. Gatenby, R., Maini, P.K., Gawlinski, E.: Analysis of tumor as an inverse problem provides a
novel theoretical framework for understanding tumor biology and therapy. Appl. Math. Lett.
15 , 339-345 (2002)
61. Gatenby, R., Silva, A., Gillies, R., Friden, B.: Adaptive therapy. Canc. Res. 69 , 4894-4903
(2009)
62. Gompertz, B.: On the nature of the function expressive of the law of human mortality, and on
a new mode of determining the value of life contingencies. Philos. Transact. Roy. Soc. Lond.
115 , 513-585 (1825)
63. Greenspan, H.: Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. 52 ,
317-340 (1972)
64. Gyllenberg, M., Osipov, A., Paivarinta, L.: The inverse problem of linear age-structured
population dynamics. J. Evol. Equat. 2 , 223-239 (2002)
65. Gyllenberg, M., Webb, G.F.: A nonlinear structured population model of tumor growth witsh
quiescence. J. Math. Biol. 28 , 671-694 (1990)
66. Haferlach, T.: Molecular genetic pathways as therapeutic targets in acute myeloid leukemia.
Hematology 2008 , 400-411 (2008), Am. Soc. Hematol. Educ. Program.
67. Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L.: Tumor development under angiogenic
signaling: a dynamical theory of tumor growth, treatment response, and postvascular dor-
mancy. Canc. Res. 59 , 4770-4775 (1999)
68. Hansen, N.: The CMA evolution strategy: A comparing review. In Lozano, J., Larraaga,
P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation. Advances in
Estimation of Distribution Algorithms, pp. 75-102. Springer, Berlin (2006)
69. Hinow, P., Wang, S., Arteaga, C., Webb, G.: A mathematical model separates quantitatively
the cytostatic and cytotoxic effects of a her2 tyrosine kinase inhibitor. Theor. Biol. Med.
Model. 4 , 14 (2007). doi:10.1186/1742-4682-4-14
70. Iliadis, A., Barbolosi, D.: Optimizing drug regimens in cancer chemotherapy by an efficacy-
toxicity mathematical model. Comput. Biomed. Res. 33 , 211-226 (2000)
71. Iwata, K., Kawasaki, K., Shigesada, N.: A dynamical model for the growth and size
distribution of multiple metastatic tumors. J. Theor. Biol. 203 , 177-186 (2000)
72. Jackson, T.: Intracellular accumulation and mechanism of action of doxorubicin in a spatio-
temporal tumor model. J. Theor. Biol. 220 , 201-213 (2003)
73. Jackson, T., Byrne, H.: A mathematical model to study the effects of drug resistance and
vasculature on the response of solid tumors to chemotherapy. Math. Biosci. 164 , 17-38 (2000)
74. Kheifetz, Y., Kogan, Y., Agur, Z.: Long-range predictability in models of cell populations
subjected to phase-specific drugs: growth-rate approximation using properties of positive
compact operators. Math. Model. Meth. Appl. Sci. 16 , 1155-1172 (2006)
75. Kimmel, M., Swierniak, A.: Control theory approach to cancer chemotherapy: Benefiting
from phase dependence and overcoming drug resistance. In: Friedman, A. (ed.) Tutorials
in Mathematical Biosciences III. Lecture Notes in Mathematics, vol. 1872, pp. 185-221.
Springer, Berlin (2006)
76. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems, 2nd edn.
Springer, New York (2011)
77. Kitano, H.: Cancer as a robust system: Implications for anticancer therapy. Nat. Rev. Canc. 3 ,
227-235 (2004)
78. Kitano, H.: A robustness-based approach to systems-oriented drug design. Nat. Rev. Drug
Discov. 6 , 202-210 (2007)
Search WWH ::




Custom Search