Biomedical Engineering Reference
In-Depth Information
References
1. Amberger, V.R., Hensel, T., Ogata, T.N.,and Schwab, M.E.: Spreading and migration of human
glioma and rat C6 cells on central nervous system myelin in vitro is correlated with tumor
malignancy and involves a metalloproteolytic activity. Cancer Res., 58 , 149-158 (1998)
2. http://www.bic.mni.mcgill.ca/brainweb/ .
3. Clatz, O., Sermesant, M., Bondiau, P.-Y., Delingette, H., Warfield, S.K., Malandian, G., and
Ayache, N.: Realistic simulation of the 3d growth of brain tumors in MR images coupling
diffusion with biomechanical deformation. IEEE Trans. Med. Imaging, 24 , 1334-1346 (2005)
4. Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., and Evans, A.C.: BrainWeb: Online Interface
to a 3D MRI Simulated Brain Database NeuroImage, vol.5, no.4, part 2/4, S425, 1997 -
Proceedings of 3-rd International Conference on Functional Mapping of the Human Brain,
Copenhagen, (1997)
5. Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., and Evans,
A.C.: Design and Construction of a Realistic Digital Brain Phantom IEEE Transactions on
Medical Imaging, vol.17, No.3, p.463-468, (1998)
6. Demuth, T. and Berens, M.E.: Molecular mechanisms of glioma cell migration and invasion. J.
Neurooncol. 70 , 217-228 (2004)
7. Eikenberry, S.E., Sankar, T., Preul, M.C., Kostelich, E.J., Thalhauser, C.J., and Kuang, Y.:
Virtual glioblastoma: growth, migration and treatment in a three-dimensional mathematical
model. Cell Prolif. 42 , 511-528 (2009)
8. Evensen, G.:Data Assimilation: The Ensemble Kalman Filter, Springer (2006)
9. Gelb A. (ed): Appliede Optimal State Estimation. MIT Press, Cambridge, Ma., (1974)
10. Grossman, A., Helbich, T.H., Kuriyama, N., Ostrowitzki, S., Roberts, T. P., Shames, D.M., van
Bruggen, N., Wendland, M.F., Israel, M.A., and Brasch, R.C.: Dynamic contrast-enhanced
magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic
therapy in a xenograft model of glioblastoma multiforme. J. Magn. Reson. Imaging, 15 , 233-
240 (2002)
11. Hoffman, R.N, Ponte, R.M., Kostelich, E.J., Blumberg, A., Szunyogh, I., Vinogradov, S.V., and
Henderson, J.M.: A simulation study using a local ensemble transform Kalman filter for data
assimilation in New York Harbor. J. Atmos. Ocean Tech., 25 , 1638-1656 (2008)
12. Horton, J.R.: An Introduction to dynamic meteorology. 4th ed. Amsterdam: Elsevier Academic
Press (2004)
13. Hunt, B.R., Kostelich, E.J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal
chaos: A local ensemble transform Kalman filter. Physica D, 230 , 112-126 (2007)
14. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME Ser.
D: J. Basic Eng., 82 , 35-45 (1960)
15. Kalman, R.E., and Bucy, R.S.: New results in linear filtering and prediction theory. Trans.
ASME Ser. D: J. Basic Eng., 83 , 95-108 (1961)
16. Kalnay, E.: Atmospheric modeling, data assimilation, and Predictability. Cambridge University
Press (2003)
17. Kwan, R.K.-S., Evans, A.C., and Pike, G.B.: An Extensible MRI Simulator for Post-Processing
Evaluation. Visualization in Biomedical Computing (VBC'96). Lecture Notes in Computer
Science, vol. 1131. Springer-Verlag, 135-140 (1996)
18. Kwan, R.K.-S., Evans, A.C., and Pike, G.B.: MRI simulation-based evaluation of image-
processing and classification methods IEEE Transactions on Medical Imaging. 18(11) , 1085-
97 Nov (1999)
19. Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci., 20 , 130-141 (1963)
20. Lorenz, E.N.: A study of the predictability of a 28-variable atmospheric model. Tellus, 17 ,
321-333 (1965)
21. Marino, S., Hogue, I.B., Ray, C.J., and Kirschner, D.E.: A methodology for performing global
uncertainty and sensitivity analysis in systems biology. J. Theor. Biol., 254 , 178-196 (2008)
Search WWH ::




Custom Search