Biomedical Engineering Reference
In-Depth Information
22. Chaplain, M., Graziano, L., Preziosi, L.: Mathematical modelling of the loss of tissue
compression responsiveness and its role in solid tumour development. Math. Med. Biol. 23 ,
197-229 (2006)
23. Cui, S., Friedman, A.: Analysis of a mathematical model of the growth of necrotic tumors.
J. Math. Anal. Appl. 255 , 636-677 (2001)
24. Cui, S., Friedman, A.: A hyperbolic free boundary problem modeling tumor growth. Interf.
Free Bound. 5 , 159-182 (2003)
25. Cristini, V., Li, X., Lowengrub, J.S., Wise, S.M.: Nonlinear simulations of solid tumor growth
using a mixture model: Invasion and branching. J. Math. Biol. 58 , 723-763 (2009)
26. Deakin, A.S.: Model for the growth of a solid in vitro tumour. Growth 39 , 159-165 (1975)
27. Durand, R.E.: Cell cycle kinetics in an in vitro tumor model. Cell Tissue Kinet. 9 , 403-412
(1976)
28. Fasano, A., Gandolfi, A., Gabrielli, M.: The energy balance in stationary multicellular
spheroids. Far East J. Math. Sci. 39 , 105-128 (2010)
29. Fasano, A., Gabrielli, M., Gandolfi, A.: Investigating the steady state of multicellular spheroids
by revisiting the two-fluid model. Math. Biosci. Eng. 8 , 239-252 (2011)
30. Folkman, J., Hochberg, M.: Self-regulation of growth in three dimensions. J. Exp. Med. 138
745-753 (1973)
31. Freyer, J.P., Sutherland, R.M.: A reduction in the in situ rates of oxygen and glucose
consumption of cells in EMT6/Ro spheroids during growth. J. Cell. Physiol. 124 , 516-524
(1985)
32. Freyer, J.P., Sutherland, R.M.: Regulation of growth saturation and development of necrosis
in EMT6/Ro multicellular spheroids by the glucose and oxygen supply. Cancer Res. 46 ,
3504-3512 (1986)
33. Gerlee, P., Anderson, A.R.: A hybrid cellular automaton model of clonal evolution in cancer:
The emergence of the glycolytic phenotype. J. Theor. Biol. 250 , 705-722 (2008)
34. Greenspan, P.: Models for the growth of a solid tumour by diffusion. Stud. Appl. Math. 51 ,
317-340 (1972)
35. Hamilton, G.: Multicellular spheroids as an in vitro tumor model. Cancer Lett. 131 , 29-34
(1998)
36. Helmlingen, G., Netti, P.A., Lichtembeld, H.C., Melder, R.J., Jain, R.K.: Solid stress inhibits
the growth of multicellular tumor spheroids. Nature Biotech. 15 , 778-783 (1997)
37. Hirschhaeuser, F., Menne, H., Dittfeld, C., West, J., Mueller-Klieser, W., Kunz-Schugart, L.A.:
Multicellular tumor spheroids: An underestimated tool is catching up again. J. Biotech. 148 ,
3-15 (2010)
38. Iordan, A., Duperray, A., Verdier, C.: A fractal approach to the rheology of concentrated cell
suspensions. Phis. Rev. E 77 , 011911 (2008)
39. Jiang, Y., Pjesivac-Grbovic, J., Cantrell, C., Freyer, J.P.: A multiscale model for avascular tumor
growth. Biophys. J. 89 , 3884-3894 (2005)
40. Kang, M., Fedkiw, R.P., Liu, X.: A boundary condition capturing method for multiphase
incompressible flow. J. Scient. Comput. 15 , 323-360 (2000)
41. Landman, K.A., Please, C.P.: Tumour dynamics and necrosis: Surface tension and stability.
IMAJ.Math.Appl.Med.Biol. 18 , 131-158 (2001)
42. Landman, K.A., White L.R.: Solid/liquid separation of flocculated suspension. Adv. Colloids
Interface Sci. 51 , 175-246 (1994)
43. Lowengrub, J.S, Frieboes, H.B., Jin, F., Chuang, Y-L., Li, X., Macklin, P., Wise, S.M., Cristini,
V.: Nonlinear modelling of cancer: Bridging the gap between cells and tumours. Nonlinearity
23 , 1-91 (2010)
44. Maggelakis, S.A., Adam, J.A.: Mathematical model of prevascular growth of a spherical
carcinoma. Math. Comput. Modelling 13 , 23-38 (1990)
45. Majno, G., La Gattuta, M., Thompson, T.E.: Cellular death and necrosis: Chemical, physical
and morphologic chenges in rat liver. Virchows Arch. path. Anat. 333 , 421-465 (1960)
46. Marusic, M., Bajzer, Z., Freyer, J.P., Vuk-Pavlovic, S.: Analysis of growth of multicellular
tumor spheroids by mathematical models. Cell. Prolif. 27 , 73-94 (1994)
Search WWH ::




Custom Search