Biomedical Engineering Reference
In-Depth Information
Acknowledgments We greatly acknowledge Prof. Jorge Campos and his team from the Faculty of
Medicine of the University of Lisbon, for providing us the in vivo rotational CTA scans of a specific
patient. This work has been partially funded by FCT (Funda¸ ao para a Ciencia e a Tecnologia,
Portugal) through grants SFRH/BPD/34273/2006 and SFRH/BPD/44478/2008 and through the
project UT Austin/CA/0047/2008.
References
1. Anand, M., Rajagopal, K.R.: A shear-thinning viscoelastic fluid model for describing the flow
of blood. Int. J. Cardiovasc. Med. Sci. 4 (2), 59-68 (2004)
2. Antiga, L., Piccinelli, M., Botti, L., Ene-Iordache, B., Remuzzi, A., Steinman, D.A.: An image-
based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng.
Comput. 46 (11), 1097-1112 (2008)
3. Balossino, R., Pennati, G., Migliavacca, F., Formaggia, L., Veneziani, A., Tuveri, M., Dubini,
G.: Influence of boundary conditions on fluid dynamics in models of the cardiovascular system:
A multiscale approach applied to the carotid bifurcation. Comput. Meth. Biomech. Biomed.
Eng. 12 (1) (2009)
4. Cebral, J.R., Castro, M.A., Appanaboyina, S., Putman, C.M., Millan, D., Frangi, A.F.: Effi-
cient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics:
Technique and sensitivity. IEEE Trans.Med. Imag. 24 (4), 457-467 (2005)
5. Cebral, J.R., Castro, M.A., Putman, C.M., Alperin, N.: Flow-area relationship in internal
carotid and vertebral arteries. Physiol. Meas. 29 , 585 (2008)
6. Formaggia, L., Veneziani, A.: Reduced and multiscale models for the human cardiovascular
system. Lecture Notes VKI Lecture Series 7 (2003)
7. Formaggia, L., Moura, A., Nobile, F.: On the stability of the coupling of 3D and 1D fluid-
structure interaction models for blood flow simulations.
Math. Model. Numer. Anal. 41 (4),
743-769 (2007)
8. Gambaruto, A.M., Peiro, J., Doorly, D.J., Radaelli, A.G.: Reconstruction of shape and its effect
on flow in arterial conduits. Int. J. Numer. Meth. Fluid. 57 (5), 495-517 (2008)
9. Gambaruto, A.M., Janela, J., Moura, A., Sequeira, A.: Sensitivity of hemodynamics in patient
specific cerebral aneurysms to vascular geometry and blood rheology. Math. Biosci. Eng. 8 (2),
409-423 (2011)
10. Goljan, E.F.: Rapid Review Pathology. Mosby/Elsevier, Philadelphia (2010)
11. Hassan, T., Timofeev, E.V., Saito, T., Shimizu, H., Ezura, M., Matsumoto, Y., Takayama, K.,
Tominaga, T., Takahashi, A.: A proposed parent vessel geometry based categorization of
saccular intracranial aneurysms: Computational flow dynamics analysis of the risk factors for
lesion rupture. J. Neurosurg. Pediatr. 103 (4) (2005)
12. Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions
for the incompressible Navier-Stokes equations.
Int. J. Numer. Meth. Fluid. 22 (5), 325-352
(1996)
13. Janela, J., Moura, A., Sequeira, A.: Absorbing boundary conditions for a 3D non-Newtonian
fluid-structure interaction model for blood flow in arteries. Int. J. Eng. Sci. 48 (11), 1332-1349
(2010)
14. Krex, D., Schackert, H.K., Schackert, G.:
Genesis of cerebral aneurysms-an update.
Acta
Neurochir. 143 (5), 429-449 (2001)
15. Ku, D.N.: Blood flow in arteries. Annu. Rev. Fluid Mech. 29 (1), 399-434 (1997)
16. Moura, A.: The geometrical multiscale modelling of the cardiovascular system: Coupling 3D
and 1D FSI models. PhD thesis, Politecnico di Milano (2007)
17. Nunes, D., Ramalho, S.:
1D hyperbolic models for blood flow in arteries.
Internal Report,
CEMAT (2009)
Search WWH ::




Custom Search