Biomedical Engineering Reference
In-Depth Information
σ
2
2
t
+
2 Δ x f
(
x
,
2
)
p 2 (
x
,
t
)+
h
(
x
,
2
)
f
(
x
,
2
)
p 2 (
x
,
t
)
0
B
+ β x g
) · x f
(
x
,
t
) x u
(
x
,
t
(
x
,
2
)
p 2 (
x
,
t
)
m 21 f
(
x
,
2
)
p 2 (
x
,
t
)
m 23 f
(
x
,
2
)
p 2 (
x
,
t
)
d x d t
+
m 12 f
(
x
,
2
)
p 1 (
x
,
t
)
m 13 f
d x d t
t
+
(
x
,
3
)
p 1 (
x
,
t
)
m 23 f
(
x
,
3
)
p 2 (
x
,
t
)
.
0
B
(51)
with
λ 12
λ 13
=
(
,
)
) ,
=
(
,
)=
) ,
m 12 :
m 12
x
1
m 13 :
m 13
x
1
(52)
u
(
x
,
t
(
p 1 ( ·,
t
)
K
)(
x
m 21 :
=
m 21 (
x
,
2
)= λ 21 (
p 2 ( ·,
t
)
K
)(
x
) ,
m 23 :
=
m 23 (
x
,
2
)= λ 23 ,
(53)
and, by Eq. ( 38 ), coupled with the dynamics of the (now purely deterministic)
underlying fields g and u
g
(
x
,
t
)
=
(
,
)+
(
,
)+ α
(
,
) ,
d g g
x
t
D g
Δ
g
x
t
g p 2
x
t
(54)
t
u
(
x
,
t
)
=
d u u
(
x
,
t
)+
D u Δ
u
(
x
,
t
)+ α u p 1 (
x
,
t
) .
(55)
t
In particular, by considering the weak evolution Eq. ( 51 ) over the three subsets
B
×
s
∈ B
S
,forany s
=
1
,
2
,
3, we find the weak form of the following system
E
of PDEs:
p 1 (
x
,
t
)
t =(
h
(
x
,
1
)
m 12
m 13 )
p 1 (
x
,
t
)+
m 21 p 2 (
x
,
t
) ,
(56)
2
2
(
,
)
p 2
x
t
= σ
2 Δ
p 2 (
x
,
t
) α 2
(
g
(
x
,
t
)
u
(
x
,
t
))
p 2 (
x
,
t
)
t
(
h
(
x
,
2
)
m 21
m 23 )
p 2 (
x
,
t
)+
m 12 p 1 (
x
,
t
) ,
(57)
p 3 (
x
,
t
)
=
m 13 p 1 (
x
,
t
)+
m 23 p 2 (
x
,
t
) ,
(58)
t
coupled with Eqs. ( 54 )and( 55 ). System ( 54 )-( 58 ) represents the continuum
description of the angiogenic network at the macroscale. It may be taken into
account only whenever a law of large numbers may be applied. It describes the
continuum densities of the different types of cells coupled with the deterministic
PDEs for the underlying fields.
 
Search WWH ::




Custom Search