Biomedical Engineering Reference
In-Depth Information
95. Li C et al (2009) In vitro metabolism of the novel, highly selective oral angiogenesis inhibitor
motesanib diphosphate in preclinical species and in humans. Drug Metab Dispos
37:1378-1394
96. TARCEVA ® : Scientific Discussion page 11. European Medicines Agency 2005. www.ema.
europa.eu , last accessed 12 Dec 2011
97. Costa DB et al (2011) CSF concentration of the anaplastic lymphoma kinase inhibitor crizo-
tinib. J Clin Oncol 29:e443-e445
98. Tan W, et al. (2010) Pharmacokinetics (PK) of PF-02341066. a dula ALK/MET inhibitor
after multiple oral dose to advanced cancer patients. J Clin Oncol 28 (228 s) (supplement,
abstract 2596)
99. Hidalgo M et al (2003) Pharmacokinetics and pharmacodynamics: maximizing the clinical
potential of erlotinib (tarceva). Semin Oncol 30:25-33
100. Lu JF et al (2006) Clinical pharmacokinetics of erlotinib in patients with solid tumors and
exposure-safety relationship in patients with non-small cell lung cancer. Clin Pharmacol Ther
80:136-145
101. Mohamed MK et al (2005) Skin rash and good performance status predict improved survival
with gefitinib in patients with advanced non-small cell lung cancer. Ann Oncol 16:780-785
102. Eskens FA et al (2006) The clinical toxicity profile of vascular endothelial growth factor
(VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis
inhibitors; a review. Eur J Cancer 42:3127-3139
103. Awidi A et al (2010) Determination of imatinib plasma levels in patients with chronic myel-
oid leukemia by high performance liquid chromatography-ultraviolet detection and liquid
chromatography-tandem mass spectrometry: methods' comparison. Leuk Res 34:714-717
104. Bakhtiar R et al (2002) High-throughput quantification of the anti-leukemia drug STI571
(gleevec) and its main metabolite (CGP 74588) in human plasma using liquid chromatogra-
phy-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 768:
325-340
105. Boddy AV et al (2007) Pharmacokinetic investigation of imatinib using accelerator mass
spectrometry in patients with chronic myeloid leukemia. Clin Cancer Res 13:4164-4169
106. Guetens G et al (2003) Quanti fi cation of the anticancer agent STI-571 in erythrocytes and
plasma by measurement of sediment technology and liquid chromatography-tandem mass
spectrometry. J Chromatogr A 1020:27-34
107. Klawitter J et al (2009) Development and validation of a sensitive assay for the quantification
of imatinib using LC/LC-MS/MS in human whole blood and cell culture. Biomed Chromatogr
23:1251-1258
108. Parise RA et al (2003) Liquid chromatographic-mass spectrometric assay for quantitation of
imatinib and its main metabolite (CGP 74588) in plasma. J Chromatogr B Analyt Technol
Biomed Life Sci 791:39-44
109. Rochat B et al (2008) Imatinib metabolite profiling in parallel to imatinib quantification in
plasma of treated patients using liquid chromatography-mass spectrometry. J Mass Spectrom
43:736-752
110. Titier K et al (2005) Quantification of imatinib in human plasma by high-performance liquid
chromatography-tandem mass spectrometry. Ther Drug Monit 27:634-640
111. Parise RA et al (2009) A high-performance liquid chromatography-mass spectrometry assay
for quantitation of the tyrosine kinase inhibitor nilotinib in human plasma and serum.
J Chromatogr B Analyt Technol Biomed Life Sci 877:1894-1900
112. Tanaka C et al (2010) Clinical pharmacokinetics of the BCR-ABL tyrosine kinase inhibitor
nilotinib. Clin Pharmacol Ther 87:197-203
113. de Bruijn P et al (2010) Bioanalytical method for the quantification of sunitinib and its n-des-
ethyl metabolite SU12662 in human plasma by ultra performance liquid chromatography/
tandem triple-quadrupole mass spectrometry. J Pharm Biomed Anal 51:934-941
114. Minkin P et al (2008) Quantification of sunitinib in human plasma by high-performance liq-
uid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed
Life Sci 874:84-88
Search WWH ::




Custom Search