Biomedical Engineering Reference
In-Depth Information
0.5
s% s
y
S
{(
u
u
)(
v
v
)
i j
.
i
1.
j
i
1.
j
i j
.
-(
u
u
)(
v
v
)}
i
-1.
j
ij
.
ij
.
i
-1.
j
s%s
S
0.5
x
{
v v
)(
u u
)
ij
.
1
i
1.
j
1
ij
.
1
ij
.
-(
vv
)(
uu
)}
ij
.
i
-1.
j
ij
.
ij
. -1
yy
-
yy
-
j
j
-1
j
j
-1
N
N
(
u
-
u
) -
(
u
-
u
)
i
1.
j
ij
.
ij
.
i
-1.
j
x
-
x
x
-
x
i
1
i
-1
i
i
-2
xx
-
N
i
i
-1
(
u
-
u
)
ij
.
1
ij
.
y
-
y
j
1
j
-1
y
xx
-
j
i
i
-1
N
s
-
(
uu
-
)
(
P
-
P
)
(5.74)
ij
.
ij
. -1
i
-1.
j
ij
.
yy
-
y
j
j
-2
j
-1
5.3.1
The Choice of Grid
When geometry is regular (e.g., rectangular or circular), choosing the
grid is simple: The grid lines usually follow the coordinate directions.
In complicated geometries, the choice is not at all trivial. The grid is
subject to constraints imposed by the discretization method. If the
algorithm is designed for curvilinear orthogonal, non-orthogonal
grids cannot be used; if the CVs are required to be quadrilaterals or
hexahedra, grids consisting of triangles and tetrahedra cannot be
used, etc. When the geometry is complex and the constraints cannot
be fulilled, compromises have to be made.
Figure 5.16 Geometry data and surface mesh of bifurcation area of ICA.
 
Search WWH ::




Custom Search